Using weiestrass M-test, show that the following series converges uniformly.
∞
∑n^3X^n,X belongs to[-1/3,1/3]
n=1
ANSWER
Denote "f_{n}(x) =n^{3}x^{n}." If "\\ x\\in\\left [ -\\frac{1}{3} ,\\frac{1}{3}\\right ]" , then
"\\left |f _{n}(x) \\right |\\leq\\frac{n^{3}}{3^{n}}" .
Let "a_{n}=\\frac{n^{3}} {3^{n}}" .
"\\frac{a_{n+1}}{a_{n}}=\\frac{(n+1) ^{3}\\cdot3^{n}}{3^{n+1}\\cdot n^{3}}= \\frac{1}{3}\\cdot \\left ( 1+\\frac{1}{n} \\right )^{3}" .
"\\lim _{n\\rightarrow\\infty}\\frac{1}{3}\\cdot \\left ( 1+\\frac{1}{n} \\right )^{3}=" "\\frac{1}{3}\\cdot" "\\lim _{n\\rightarrow\\infty}\\ \\left ( 1+\\frac{1}{n} \\right )^{3}=" "\\frac{1}{3 }\\cdot \\left ( \\lim_{n\\rightarrow\\infty}\\left ( 1+\\frac{1}{n} \\right ) \\right )^{3}=\\frac{1}{3}<1"
Because "\\lim_{n\\rightarrow\\infty}\\frac{a_{n+1}}{a_{n}}=\\frac{1}{3}<1\\" , then the series "\\sum_{n=1}^{\\infty}a_{n}" converges (by the Ratio Test).
Thus, using the Weierstrass M-Test , we make sure that the series "\\sum_{n=1}^{\\infty}n^{3}x^{n}" converges uniformly on "\\left [ -\\frac{1}{3} ,\\frac{1}{3}\\right ]"
Comments
Leave a comment