Show that the sequence En=(1+1/n)^n is bounded and increasing
"e_n=\\left( 1+\\frac{1}{n} \\right) ^n\\\\\\left( 1+\\frac{1}{n} \\right) ^n=\\sum_{i=0}^n{C_{n}^{i}\\left( \\frac{1}{n} \\right) ^{n-i}}=1+n\\cdot \\frac{1}{n}+\\frac{n\\left( n-1 \\right)}{2n^2}+\\frac{n\\left( n-1 \\right) \\left( n-2 \\right)}{2\\cdot 3n^3}+...+\\frac{n!}{n!n^n}=\\\\=2+\\frac{1}{2!}\\frac{n-1}{n}+\\frac{1}{3!}\\frac{n-2}{n}\\frac{n-1}{n}+...+\\frac{1}{n!}\\frac{1}{n}\\frac{2}{n}...\\frac{n}{n}<\\\\<2+\\frac{1}{2!}+\\frac{1}{3!}+...+\\frac{1}{n!}<2+\\frac{1}{2}+\\frac{1}{2^2}+...+\\frac{1}{2^{n-1}}<2+\\frac{1\/2}{1-1\/2}=3\\\\Bounded\\,\\,by\\,\\,3\\\\Next,\\\\e_n=2+\\frac{1}{2!}\\left( 1-\\frac{1}{n} \\right) +\\frac{1}{3!}\\left( 1-\\frac{1}{n} \\right) \\left( 1-\\frac{2}{n} \\right) +...+\\frac{1}{n!}\\left( 1-\\frac{1}{n} \\right) \\left( 1-\\frac{2}{n} \\right) ...\\left( 1-\\frac{n-1}{n} \\right) \\\\e_{n+1}=2+\\frac{1}{2!}\\left( 1-\\frac{1}{n+1} \\right) +\\frac{1}{3!}\\left( 1-\\frac{1}{n+1} \\right) \\left( 1-\\frac{2}{n+1} \\right) +...+\\frac{1}{n!}\\left( 1-\\frac{1}{n+1} \\right) \\left( 1-\\frac{2}{n+1} \\right) ...\\left( 1-\\frac{n-1}{n+1} \\right) +\\\\+\\frac{1}{\\left( n+1 \\right) !}\\left( 1-\\frac{1}{n+1} \\right) \\left( 1-\\frac{2}{n+1} \\right) ...\\left( 1-\\frac{n}{n+1} \\right) >\\\\>2+\\frac{1}{2!}\\left( 1-\\frac{1}{n} \\right) +\\frac{1}{3!}\\left( 1-\\frac{1}{n} \\right) \\left( 1-\\frac{2}{n} \\right) +...+\\frac{1}{n!}\\left( 1-\\frac{1}{n} \\right) \\left( 1-\\frac{2}{n} \\right) ...\\left( 1-\\frac{n-1}{n} \\right) =e_n\\\\Incre\\mathrm{a}\\sin g\\\\"
Comments
Leave a comment