Let P = (3, 4), ò= (0, 0), P0 = (5,0) be points in R²
equipped with the
Euclidean metric. Let R be the ring given by R ={v∈ R²: 4 < d(ò, v) ≤ 7}.
Which of the following are neighborhoods of P?
R, B1 = B(ò, 4), B2 = B(ò, 6), B3 = R \ B2, B4 = B(ò, 1) ∪ B2, B5 = B(P0,√11).
"\\mathbb{R} ^2\\,\\,is\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P, \\sin ce\\,\\,P\\in \\mathbb{R} ^2,\\mathbb{R} ^2\\,\\,is\\,\\,open\\\\B_1=B\\left( O,4 \\right) \\,\\,is\\,\\,not\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P: \\left\\| \\left( 3,4 \\right) -\\left( 0,0 \\right) \\right\\| =5>4\\Rightarrow \\left( 3,4 \\right) \\notin B_1\\\\B_2=B\\left( O,6 \\right) \\,\\,is\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P: \\left\\| \\left( 3,4 \\right) -\\left( 0,0 \\right) \\right\\| =5<6\\Rightarrow \\left( 3,4 \\right) \\in B_2,B_2\\,\\,is\\,\\,open\\\\B_3=\\mathbb{R} ^2\\setminus B_2\\,\\,is\\,\\,not\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P: P\\in B_2\\Rightarrow P\\notin B_3\\\\B_4=B\\left( O,1 \\right) \\cup B_2=B_2\\,\\,is\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P\\,\\,\\left( see\\,\\,above \\right) \\\\B_5=B\\left( P_0,\\sqrt{11} \\right) \\,\\,is\\,\\,not\\,\\,a\\,\\,neighborhood\\,\\,of\\,\\,P: \\left\\| \\left( 3,4 \\right) -\\left( 5,0 \\right) \\right\\| =\\sqrt{2^2+4^2}>\\sqrt{11}\\Rightarrow \\left( 3,4 \\right) \\notin B_5"
Comments
Leave a comment