1.
"g_{pl}=\\dfrac{GM_{pl}}{R_{pl}^2}=\\dfrac{3}{8}g_E"
The velocity of escape is
"v_{escape}=\\sqrt{\\dfrac{3g_ER_{pl}}{4}}"
"v_{escape}=\\sqrt{\\dfrac{3(9.81)(3396000)}{4}}=4998.6(m\/s)"
"5\\ km\/s"
2.
Let "s(t) =" amount, in lb of salt at time "t." Then we have
"\\dfrac{ds}{dt}="(rate of salt into tank) − (rate of salt out of tank)
So we get the differential equation
"s(t)=c_1(100+2t)^{-3\/2}"
"s(0)=c_1(100)^{-3\/2}=20"
"c_1=20000"
"s(t)=20000(100+2t)^{-3\/2}"
"s(60)=20000(100+2(60))^{-3\/2}"
"s(60)=6.13\\ lb"
"s(t)=20000(100+2t)^{-3\/2}=10"
"(100+2t)^{3\/2}=2000"
"100+2t=100\\sqrt[3]{4}"
"t=50(\\sqrt[3]{4}-1)"
"t=29.37\\ min"
Comments
Leave a comment