Solve the partial differential equation
Px+q=p^2
Its subsidiary equations are given by
"=\\dfrac{dq}{f_y+qf_z}=\\dfrac{d\\phi}{0}"
"=\\dfrac{dq}{0}=\\dfrac{d\\phi}{0}"
Taking "dq = 0 \u21d2 q = c (constant)"
"p^2-xp-q=0" becomes "p^2-xp-c=0"
Thus
"dz=\\dfrac{x\\pm\\sqrt{x^2+4c}}{2}dx+cdy"
Integrate
"\\int \\dfrac{\\sqrt{x^2+4c}}{2}dx=c\\ln(|\\sqrt{x^2+4c}+x|)+\\dfrac{x}{4}\\sqrt{x^2+4c}"
"z=\\dfrac{x^2}{4}\\pm(c\\ln(|\\sqrt{x^2+4c}+x|)+\\dfrac{x}{4}\\sqrt{x^2+4c})"
"+cy+C_2"
Comments
Leave a comment