Its subsidiary equations are given by
d x − f p = d y − f q = d z − p f p − q f q = d p f q + p f z \dfrac{dx}{-f_p}=\dfrac{dy}{-f_q}=\dfrac{dz}{-pf_p-qf_q}=\dfrac{dp}{f_q+pf_z} − f p d x = − f q d y = − p f p − q f q d z = f q + p f z d p
= d q f y + q f z = d ϕ 0 =\dfrac{dq}{f_y+qf_z}=\dfrac{d\phi}{0} = f y + q f z d q = 0 d ϕ
d x 2 p − x = d y − 1 = d z 2 p 2 − x p − q = d p p + 0 \dfrac{dx}{2p-x}=\dfrac{dy}{-1}=\dfrac{dz}{2p^2-xp-q}=\dfrac{dp}{p+0} 2 p − x d x = − 1 d y = 2 p 2 − x p − q d z = p + 0 d p
= d q 0 = d ϕ 0 =\dfrac{dq}{0}=\dfrac{d\phi}{0} = 0 d q = 0 d ϕ Taking d q = 0 ⇒ q = c ( c o n s t a n t ) dq = 0 ⇒ q = c (constant) d q = 0 ⇒ q = c ( co n s t an t )
p 2 − x p − q = 0 p^2-xp-q=0 p 2 − x p − q = 0 becomes p 2 − x p − c = 0 p^2-xp-c=0 p 2 − x p − c = 0
p = x ± x 2 + 4 c 2 p=\dfrac{x\pm\sqrt{x^2+4c}}{2} p = 2 x ± x 2 + 4 c Thus
d z = p d x + q d y dz=pdx+qdy d z = p d x + q d y
d z = x ± x 2 + 4 c 2 d x + c d y dz=\dfrac{x\pm\sqrt{x^2+4c}}{2}dx+cdy d z = 2 x ± x 2 + 4 c d x + c d y Integrate
z = ∫ ( x ± x 2 + 4 c 2 ) d x + c ∫ d y + C 1 z=\int(\dfrac{x\pm\sqrt{x^2+4c}}{2})dx+c\int dy+C_1 z = ∫ ( 2 x ± x 2 + 4 c ) d x + c ∫ d y + C 1
∫ x 2 + 4 c 2 d x = c ln ( ∣ x 2 + 4 c + x ∣ ) + x 4 x 2 + 4 c \int \dfrac{\sqrt{x^2+4c}}{2}dx=c\ln(|\sqrt{x^2+4c}+x|)+\dfrac{x}{4}\sqrt{x^2+4c} ∫ 2 x 2 + 4 c d x = c ln ( ∣ x 2 + 4 c + x ∣ ) + 4 x x 2 + 4 c
z = x 2 4 ± ( c ln ( ∣ x 2 + 4 c + x ∣ ) + x 4 x 2 + 4 c ) z=\dfrac{x^2}{4}\pm(c\ln(|\sqrt{x^2+4c}+x|)+\dfrac{x}{4}\sqrt{x^2+4c}) z = 4 x 2 ± ( c ln ( ∣ x 2 + 4 c + x ∣ ) + 4 x x 2 + 4 c )
+ c y + C 2 +cy+C_2 + cy + C 2
Comments