c)
p+2xyq=x
1dx=2xydy=xdz
2xdx=dy/y
x2=lny+c1
xdx=dz
x2=2z+c2
F(c1,c2)=F(x2−lny,x2−2z)=0
b)
1dx=−xdu=0dy
xdx=−du
x2=−2u+c1
x2+2u=c1
y=c2
F(c1,c2)=F(x2+2u,y)=0
d)
1dz=−ydy=u+1du=0dx
z=−lny+lnc1
ezy=c1
−lny=ln(u+1)−lnc2
c2=y(u+1)
x=c3
F(c1,c2,c3)=F(ezy,y(u+1),x)=0
a)
1dz=u−xydu=0dx=0dy
x=c1
y=c2
dz=du/(u−c1c2)
z=ln(u−c1c2)+lnc3
ez=c3(u−c1c2)=c3(u−xy)
ez/(u−xy)=c3
F(c1,c2,c3)=F(x,y,ez/(u−xy))=0
Comments