Question #266538

Reduce each of the following equations into canonical form and find the general solution: (a) Uz + xy = u, (b) ux + x +y = y, (C) ux + 2xy uy = x, (d) Uz – yuy – u = 1.

1
Expert's answer
2021-11-16T16:56:24-0500

c)

p+2xyq=xp+2xyq=x


dx1=dy2xy=dzx\frac{dx}{1}=\frac{dy}{2xy}=\frac{dz}{x}


2xdx=dy/y2xdx=dy/y


x2=lny+c1x^2=lny+c_1


xdx=dzxdx=dz


x2=2z+c2x^2=2z+c_2


F(c1,c2)=F(x2lny,x22z)=0F(c_1,c_2)=F(x^2-lny,x^2-2z)=0


b)

dx1=dux=dy0\frac{dx}{1}=-\frac{du}{x}=\frac{dy}{0}

xdx=duxdx=-du


x2=2u+c1x^2=-2u+c_1


x2+2u=c1x^2+2u=c_1


y=c2y=c_2


F(c1,c2)=F(x2+2u,y)=0F(c_1,c_2)=F(x^2+2u,y)=0


d)

dz1=dyy=duu+1=dx0\frac{dz}{1}=-\frac{dy}{y}=\frac{du}{u+1}=\frac{dx}{0}


z=lny+lnc1z=-lny+lnc_1

ezy=c1e^zy=c_1


lny=ln(u+1)lnc2-lny=ln(u+1)-lnc_2

c2=y(u+1)c_2=y(u+1)


x=c3x=c_3


F(c1,c2,c3)=F(ezy,y(u+1),x)=0F(c_1,c_2,c_3)=F(e^zy,y(u+1),x)=0


a)

dz1=duuxy=dx0=dy0\frac{dz}{1}=\frac{du}{u-xy}=\frac{dx}{0}=\frac{dy}{0}


x=c1x=c_1

y=c2y=c_2


dz=du/(uc1c2)dz=du/(u-c_1c_2)


z=ln(uc1c2)+lnc3z=ln(u-c_1c_2)+lnc_3

ez=c3(uc1c2)=c3(uxy)e^z=c_3(u-c_1c_2)=c_3(u-xy)

ez/(uxy)=c3e^z/(u-xy)=c_3


F(c1,c2,c3)=F(x,y,ez/(uxy))=0F(c_1,c_2,c_3)=F(x,y,e^z/(u-xy))=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS