Reduce each of the following equations into canonical form and find the general solution: (a) Uz + xy = u, (b) ux + x +y = y, (C) ux + 2xy uy = x, (d) Uz – yuy – u = 1.
c)
"p+2xyq=x"
"\\frac{dx}{1}=\\frac{dy}{2xy}=\\frac{dz}{x}"
"2xdx=dy\/y"
"x^2=lny+c_1"
"xdx=dz"
"x^2=2z+c_2"
"F(c_1,c_2)=F(x^2-lny,x^2-2z)=0"
b)
"\\frac{dx}{1}=-\\frac{du}{x}=\\frac{dy}{0}"
"xdx=-du"
"x^2=-2u+c_1"
"x^2+2u=c_1"
"y=c_2"
"F(c_1,c_2)=F(x^2+2u,y)=0"
d)
"\\frac{dz}{1}=-\\frac{dy}{y}=\\frac{du}{u+1}=\\frac{dx}{0}"
"z=-lny+lnc_1"
"e^zy=c_1"
"-lny=ln(u+1)-lnc_2"
"c_2=y(u+1)"
"x=c_3"
"F(c_1,c_2,c_3)=F(e^zy,y(u+1),x)=0"
a)
"\\frac{dz}{1}=\\frac{du}{u-xy}=\\frac{dx}{0}=\\frac{dy}{0}"
"x=c_1"
"y=c_2"
"dz=du\/(u-c_1c_2)"
"z=ln(u-c_1c_2)+lnc_3"
"e^z=c_3(u-c_1c_2)=c_3(u-xy)"
"e^z\/(u-xy)=c_3"
"F(c_1,c_2,c_3)=F(x,y,e^z\/(u-xy))=0"
Comments
Leave a comment