Prove that y(x) = C1 sin2x + C2 cos2x is a solution of y
(2) + 4y = 0
"\\text{Given } y(x) = c_1 \\sin 2x + c_2 \\cos 2x \\\\\ny'(x) = 2c_1 \\cos 2x - 2c_2 \\sin 2x \\\\\ny''(x)= -4c_1 \\cos 2x - 4c_2 \\cos 2x \\\\\n\\implies y''(x) + 4y(x) = -4c_1 \\cos 2x - 4c_2 \\cos 2x + 4c_1 \\sin 2x + 4c_2 \\cos 2x \\\\\n\\qquad \\qquad \\qquad \\qquad \\quad = -4c_1 \\cos 2x + 4c_1 \\cos 2x -4c_1 \\sin 2x + 4c_1 \\cos 2x\\\\ \n \\qquad \\qquad \\qquad \\qquad \\quad = 0 \\\\\n\\therefore y(x) = c_1 \\sin 2x + c_2 \\cos 2x \\text{ is a solution of } y''(x) + 4y(x) = 0"
Comments
Leave a comment