Answer to Question #265393 in Differential Equations for mossa

Question #265393

dx/dt=-4x+y+z

dy/dt=x+5y-z

dz/dt=y-3z


1
Expert's answer
2021-11-16T13:43:21-0500

he given system can be expressed as

X=AXX'=AX , where X=[dxdtdydtdzdt],A=[142412006],X=[xyz]X' = \begin{bmatrix} \frac{dx}{dt} \\[0.3em] \frac{dy}{dt} \\[0.3em] \frac{dz}{dt} \end{bmatrix},A = \begin{bmatrix} -1 & 4 & 2 \\[0.3em] 4 & -1 & 2 \\[0.3em] 0 & 0 & 6 \end{bmatrix},X = \begin{bmatrix} x \\[0.3em] y \\[0.3em] z \end{bmatrix}

Find the eigenvalues and eigenvectors of the coefficient matrix AA.

Characteristic equation of the matrix AA is given by

det(AλI)=0det(A-\lambda I)=0

λ+1424λ+12006λ =0\Rightarrow \left | \begin{matrix} \lambda +1 & 4 & 2 \\ 4 & \lambda +1 & 2 \\ 0 & 0 & 6-\lambda \end{matrix} \ \right |=0

λ3+4λ2+27λ90=0\Rightarrow -\lambda ^3+4\lambda ^2+27\lambda -90=0

(λ+5)(λ3)(λ6)=0\Rightarrow (\lambda +5)(\lambda -3)(\lambda -6)=0

λ=5,3,6\Rightarrow \lambda =-5,3,6

So, the eigenvalues of the matrix AA are: λ=5,3,6\Rightarrow \lambda =-5,3,6

Now let us find the eigenvectors corresponding to the eigenvalues.

Eigenvector corresponding to the eigenvalue λ=5\lambda =-5 :

Let v1v_{1} be the eigenvector corresponding to the eigenvalue λ=5\lambda=-5

Then, (A+5I)v=0(A+5*I)v=0

[4424420011]v=0\Rightarrow \begin{bmatrix} 4 & 4 & 2 \\[0.3em] 4 & 4 & 2 \\[0.3em] 0 & 0 & 11 \end{bmatrix}v=0

Solve the homogeneous system by Gaussian elimination.

[221000001]v=0\Rightarrow \begin{bmatrix} 2 & 2 & 1 \\[0.3em] 0 & 0 & 0 \\[0.3em] 0 & 0 & 1 \end{bmatrix}v=0

x1+x2=0,x3=0\Rightarrow x_{1}+x_{2}=0,x_{3}=0

v1=[110]\Rightarrow v_{1}=\begin{bmatrix} -1 \\[0.3em] 1 \\[0.3em] 0 \end{bmatrix}

Similarly, the eigenvectors corresponding to the eigenvalues λ=3,6\lambda=3,6 are

v2=[110],v3=[223]v_{2}=\begin{bmatrix} 1 \\[0.3em] 1 \\[0.3em] 0 \end{bmatrix},v_{3}=\begin{bmatrix} 2 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}

Therefore, the general solution of the given system is

X(t)=c1e5t[110]+c2e3t[110]+c3e6t[223]X(t)= c_{1}e^{-5t}\begin{bmatrix} -1 \\[0.3em] 1 \\[0.3em] 0 \end{bmatrix}+c_{2}e^{3t}\begin{bmatrix} 1 \\[0.3em] 1 \\[0.3em] 0 \end{bmatrix}+c_{3}e^{6t}\begin{bmatrix} 2 \\[0.3em] 2 \\[0.3em] 3 \end{bmatrix}

That is, [x(t)y(t)z(t)]=[c1e5t+c2e3t+2c3e6tc1e5t+c2e3t+2c3e6t3c3e6t]\begin{bmatrix} x(t) \\[0.3em] y(t) \\[0.3em] z(t) \end{bmatrix}= \begin{bmatrix} - c_{1}e^{-5t} +c_{2} e^{3t}+2c_{3}e^{6t} \\[0.3em] c_{1}e^{-5t} +c_{2} e^{3t}+2c_{3}e^{6t} \\[0.3em] 3c_{3}e^{6t} \end{bmatrix}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment