dx/dt=-4x+y+z
dy/dt=x+5y-z
dz/dt=y-3z
he given system can be expressed as
"X'=AX" , where "X' = \\begin{bmatrix}\n \\frac{dx}{dt} \\\\[0.3em]\n \\frac{dy}{dt} \\\\[0.3em]\n \\frac{dz}{dt} \\end{bmatrix},A = \\begin{bmatrix}\n -1 & 4 & 2 \\\\[0.3em]\n 4 & -1 & 2 \\\\[0.3em]\n 0 & 0 & 6\n \\end{bmatrix},X = \\begin{bmatrix}\n x \\\\[0.3em]\n y \\\\[0.3em]\n z \\end{bmatrix}"
Find the eigenvalues and eigenvectors of the coefficient matrix "A".
Characteristic equation of the matrix "A" is given by
"det(A-\\lambda I)=0"
"\\Rightarrow \\left | \n \\begin{matrix}\n \\lambda +1 & 4 & 2 \\\\\n 4 & \\lambda +1 & 2 \\\\\n 0 & 0 & 6-\\lambda \n \\end{matrix}\n\\ \\right |=0"
"\\Rightarrow -\\lambda ^3+4\\lambda ^2+27\\lambda -90=0"
"\\Rightarrow (\\lambda +5)(\\lambda -3)(\\lambda -6)=0"
"\\Rightarrow \\lambda =-5,3,6"
So, the eigenvalues of the matrix "A" are: "\\Rightarrow \\lambda =-5,3,6"
Now let us find the eigenvectors corresponding to the eigenvalues.
Eigenvector corresponding to the eigenvalue "\\lambda =-5" :
Let "v_{1}" be the eigenvector corresponding to the eigenvalue "\\lambda=-5"
Then, "(A+5*I)v=0"
"\\Rightarrow \\begin{bmatrix}\n 4 & 4 & 2 \\\\[0.3em]\n 4 & 4 & 2 \\\\[0.3em]\n 0 & 0 & 11\n \\end{bmatrix}v=0"
Solve the homogeneous system by Gaussian elimination.
"\\Rightarrow \\begin{bmatrix}\n 2 & 2 & 1 \\\\[0.3em]\n 0 & 0 & 0 \\\\[0.3em]\n 0 & 0 & 1\n \\end{bmatrix}v=0"
"\\Rightarrow x_{1}+x_{2}=0,x_{3}=0"
"\\Rightarrow v_{1}=\\begin{bmatrix}\n -1 \\\\[0.3em]\n 1 \\\\[0.3em]\n 0 \n \\end{bmatrix}"
Similarly, the eigenvectors corresponding to the eigenvalues "\\lambda=3,6" are
"v_{2}=\\begin{bmatrix}\n 1 \\\\[0.3em]\n 1 \\\\[0.3em]\n 0 \n \\end{bmatrix},v_{3}=\\begin{bmatrix}\n 2 \\\\[0.3em]\n 2 \\\\[0.3em]\n 3 \n \\end{bmatrix}"
Therefore, the general solution of the given system is
"X(t)= c_{1}e^{-5t}\\begin{bmatrix}\n -1 \\\\[0.3em]\n 1 \\\\[0.3em]\n 0 \n \\end{bmatrix}+c_{2}e^{3t}\\begin{bmatrix}\n 1 \\\\[0.3em]\n 1 \\\\[0.3em]\n 0 \n \\end{bmatrix}+c_{3}e^{6t}\\begin{bmatrix}\n 2 \\\\[0.3em]\n 2 \\\\[0.3em]\n 3 \n \\end{bmatrix}"
That is, "\\begin{bmatrix}\n x(t) \\\\[0.3em]\n y(t) \\\\[0.3em]\n z(t) \n \\end{bmatrix}= \\begin{bmatrix}\n - c_{1}e^{-5t} +c_{2} e^{3t}+2c_{3}e^{6t} \\\\[0.3em]\n c_{1}e^{-5t} +c_{2} e^{3t}+2c_{3}e^{6t} \\\\[0.3em]\n 3c_{3}e^{6t} \n \\end{bmatrix}"
Comments
Leave a comment