he given system can be expressed as
X′=AX , where X′=⎣⎡dtdxdtdydtdz⎦⎤,A=⎣⎡−1404−10226⎦⎤,X=⎣⎡xyz⎦⎤
Find the eigenvalues and eigenvectors of the coefficient matrix A.
Characteristic equation of the matrix A is given by
det(A−λI)=0
⇒∣∣λ+1404λ+10226−λ ∣∣=0
⇒−λ3+4λ2+27λ−90=0
⇒(λ+5)(λ−3)(λ−6)=0
⇒λ=−5,3,6
So, the eigenvalues of the matrix A are: ⇒λ=−5,3,6
Now let us find the eigenvectors corresponding to the eigenvalues.
Eigenvector corresponding to the eigenvalue λ=−5 :
Let v1 be the eigenvector corresponding to the eigenvalue λ=−5
Then, (A+5∗I)v=0
⇒⎣⎡4404402211⎦⎤v=0
Solve the homogeneous system by Gaussian elimination.
⇒⎣⎡200200101⎦⎤v=0
⇒x1+x2=0,x3=0
⇒v1=⎣⎡−110⎦⎤
Similarly, the eigenvectors corresponding to the eigenvalues λ=3,6 are
v2=⎣⎡110⎦⎤,v3=⎣⎡223⎦⎤
Therefore, the general solution of the given system is
X(t)=c1e−5t⎣⎡−110⎦⎤+c2e3t⎣⎡110⎦⎤+c3e6t⎣⎡223⎦⎤
That is, ⎣⎡x(t)y(t)z(t)⎦⎤=⎣⎡−c1e−5t+c2e3t+2c3e6tc1e−5t+c2e3t+2c3e6t3c3e6t⎦⎤
Comments
Leave a comment