Solve: z(x+2y)p-z(2x+y)q=y^2-x^2
Solution:
"z(x+2y)p-z(2x+y)q=y^2-x^2;"
The auxiliary equation are:
"\\frac{dx}{z(x+2y)}=\\frac{dy}{-z(2x+y)}=\\frac{dz}{y^2-x^2};"
Considering the first two equations:
"\\frac{dx-dy}{3z(x+y)}=0..........(1)"
"dx=dy"
integrating:
"x=y+c_1;"
Considering (1) and the last auxiliary equatoin:
"\\frac{dx-dy}{3z(x+y)}=\\frac{dz}{x^2+y^2};"
"(x-y)(dx-dy)=3zdz;"
"xdx-xdy-ydx+ydy=3zdz;"
integrating:
"\\frac{x^2}{2}-2xy+\\frac{y^2}{2}=\\frac{3}{2}z^2+c_2;"
"x^2-4xy+y^2=3z^2+c_2;"
Answer:
The solution of the equation is:
"F(x-y,x^2+y^2-3z^2-4xy)=0."
Comments
Leave a comment