Solve( D^2+ DD'-6D'^2)z= cos(2x+y)
"(D^2+DD'-6D'^2)z=cos(2x+y)"
The auxiliary equation is "m^2+m-6=0"
"m^2-2m+3m-6=0"
"m(m-2)+3(m-2)=0"
"(m+3)(m-2)=0"
Solved to get "m=2 , -3"
"\\therefore" the C.F is f1(y+2x)+xf2(y-3x)
P.I ="\\frac{1}{D^2+DD'-6D'^2}cos(2x+y)"
Replacing D2=-a2, DD'=-ab, D'2=-b2
From a=2, b=1
D2=-4, DD'=-2, D'2=-1
"P.I=\\frac{1}{D^2+DD'-6D'^2}cos(2x+y)"
Incase of failure of f(D,D')=f(a,b)=0 for a=2, b=1 in cos(2x+y)
We therefore differentiate f(D,D') with respect to D and multiply f(x,y) by x
"P.I=\\frac{1}{2D+D'}xcos(2x+y)"
Now replace D by a=2 and D' by b =1
"P.I=\\frac{1}{2(2)+(1)}xcos(2x+y)"
"=\\frac{x\\ cos(2x+y)}{5}"
"z=C.F+P.I"
"\\therefore z=f_1(y+2x)+xf_2(y-3x)+\\frac{x\\ cos(2x+y)}{5}"
Comments
Leave a comment