Solve: z(x+2y)p-z(2x+y)q=y^2-x^2
Solution;
"z(x+2y)p-z(2x+y)q=y^2-x^2"
The auxiliary equation are;
"\\frac{dx}{z(x+2y)}=\\frac{dy}{-z(2x+y)}=\\frac{dz}{y^2-x^2}"
Considering the first two equations;
"\\frac{dx-dy}{3z(x+y)}=0" .....(1)
"dx=dy"
Integrating;
"x=y+c_1"
Considering (1) and the last auxillary equation;
"\\frac{dx-dy}{3z(x+y)}=\\frac{dz}{x^2-y^2}"
"(x-y)(dx-dy)=3zdz"
"xdx-xdy-ydx+ydy=3zdz"
Integrating;
"\\frac{x^2}{2}-2xy+\\frac{y^2}{2}=\\frac 32z^2+c_2"
"x^2-4xy+y^2=3z^2+c_2"
The solution of the equation is;
"F(x-y,x^2+y^2-3z^2-4xy)=0"
Comments
Leave a comment