Question #266776

Determine the general solution to the equation ∂2u/∂t2=c2(∂2u/∂x2) under the boundary conditions u(0,t)=u(1,t)=0 and initial conditions u(x,0)=Φ(x), ut(x,o)=Ψ(x)


1
Expert's answer
2021-11-23T15:43:14-0500

Solution;

Given;

2ut2=c2(2ux2)..(1)\frac{\partial^2u}{\partial t^2}=c^2(\frac{\partial^2u}{\partial x^2}).….(1)

Using seperation of variables look for the solution of the form;

u(x,t)=X(x)T(t)u(x,t)=X(x)T(t)

Then;

XTc2XT=0XT''-c^2X''T=0

Divide by c2XTc^2XT we get;

Tc2T=XX=λ\frac{T''}{c^2T}=\frac{X''}{X}=-\lambda

Here λ\lambda must be a constant ,so we arrive to two solutions;

(i)

T+c2λT=0T''+c^2\lambda T=0

Whose solution is;

T(t)=Acos(cλt)+Bsin(cλt)T(t)=Acos(c\sqrt{\lambda}t)+Bsin(c\sqrt{\lambda}t)

(ii)

X+λX=0X''+\lambda X=0

Whose solution is;

X(x)=Ccos(λx)+Dsin(λx)X(x)=Ccos(\sqrt{\lambda}x)+Dsin(\sqrt{\lambda}x)

From the boundary conditions;

u(0,t)=u(1,t)=0u(0,t)=u(1,t)=0

It implies that C=0

And;

λ=nπ    λn=n2π\sqrt{\lambda}=nπ\implies\lambda_n=n^2π

n is an intenger .

For n we have the X and T solutions as;

Tn(t)=Acos(cnπt)+Bsin(cnπt)T_n(t)=Acos(cnπt)+Bsin(cnπt)

And;

Xn(x)=sin(nπx)X_n(x)=sin(nπx)

Each un=XnTnu_n=X_nT_n solves the wave equation.

The sum;

u(x,t)=n=0Xn(x)Tn(t)u(x,t)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T_n(t)

By substitution;

u(x,t)=n=0[Ancos(cnπt)+Bnsin(cnπt)]sin(nπx)....(2)u(x,t)=\displaystyle\sum_{n=0}^{\infin}[A_ncos(cnπt)+B_nsin(cnπt)]sin(nπx)....(2)

Is a solution of the equation.

Equation (2) is a solution if it satisfies the initial conditions;

If:

u(x,0)=Φ(x)=n=0Xn(x)Tn(0)=n=0Ansin(nπx)u(x,0)=\Phi(x)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T_n(0)=\displaystyle\sum_{n=0}^{\infin}A_nsin(nπx)

And;

ut(x,0)=Ψ(x)=n=0Xn(x)Tn(0)=n=0Bncnπsin(nπx)u_t(x,0)=\Psi(x)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T'_n(0)=\displaystyle\sum_{n=0}^{\infin}B_ncnπsin(nπx)

Again,as long as Φ\Phi and Ψ\Psi are piecewise continuously differentiable,then we can find AnA_n and BnB_n to satisfy these equations as follows;

An=201ϕ(x)sin(nπx)dxA_n=2\int_0^1\phi(x)sin(nπx)dx

Bn=2cnπ01ψ(x)sin(nπx)dxB_n=\frac{2}{cnπ}\int_0^1\psi(x)sin(nπx)dx

Hence the complete general solution to equation (1) under the given conditions is by substituting these values in (2).






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS