Solution;
Given;
∂ 2 u ∂ t 2 = c 2 ( ∂ 2 u ∂ x 2 ) . … . ( 1 ) \frac{\partial^2u}{\partial t^2}=c^2(\frac{\partial^2u}{\partial x^2}).….(1) ∂ t 2 ∂ 2 u = c 2 ( ∂ x 2 ∂ 2 u ) . … . ( 1 )
Using seperation of variables look for the solution of the form;
u ( x , t ) = X ( x ) T ( t ) u(x,t)=X(x)T(t) u ( x , t ) = X ( x ) T ( t )
Then;
X T ′ ′ − c 2 X ′ ′ T = 0 XT''-c^2X''T=0 X T ′′ − c 2 X ′′ T = 0
Divide by c 2 X T c^2XT c 2 XT we get;
T ′ ′ c 2 T = X ′ ′ X = − λ \frac{T''}{c^2T}=\frac{X''}{X}=-\lambda c 2 T T ′′ = X X ′′ = − λ
Here λ \lambda λ must be a constant ,so we arrive to two solutions;
(i)
T ′ ′ + c 2 λ T = 0 T''+c^2\lambda T=0 T ′′ + c 2 λ T = 0
Whose solution is;
T ( t ) = A c o s ( c λ t ) + B s i n ( c λ t ) T(t)=Acos(c\sqrt{\lambda}t)+Bsin(c\sqrt{\lambda}t) T ( t ) = A cos ( c λ t ) + B s in ( c λ t )
(ii)
X ′ ′ + λ X = 0 X''+\lambda X=0 X ′′ + λ X = 0
Whose solution is;
X ( x ) = C c o s ( λ x ) + D s i n ( λ x ) X(x)=Ccos(\sqrt{\lambda}x)+Dsin(\sqrt{\lambda}x) X ( x ) = C cos ( λ x ) + Ds in ( λ x )
From the boundary conditions;
u ( 0 , t ) = u ( 1 , t ) = 0 u(0,t)=u(1,t)=0 u ( 0 , t ) = u ( 1 , t ) = 0
It implies that C=0
And;
λ = n π ⟹ λ n = n 2 π \sqrt{\lambda}=nπ\implies\lambda_n=n^2π λ = nπ ⟹ λ n = n 2 π
n is an intenger .
For n we have the X and T solutions as;
T n ( t ) = A c o s ( c n π t ) + B s i n ( c n π t ) T_n(t)=Acos(cnπt)+Bsin(cnπt) T n ( t ) = A cos ( c nπ t ) + B s in ( c nπ t )
And;
X n ( x ) = s i n ( n π x ) X_n(x)=sin(nπx) X n ( x ) = s in ( nπ x )
Each u n = X n T n u_n=X_nT_n u n = X n T n solves the wave equation.
The sum;
u ( x , t ) = ∑ n = 0 ∞ X n ( x ) T n ( t ) u(x,t)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T_n(t) u ( x , t ) = n = 0 ∑ ∞ X n ( x ) T n ( t )
By substitution;
u ( x , t ) = ∑ n = 0 ∞ [ A n c o s ( c n π t ) + B n s i n ( c n π t ) ] s i n ( n π x ) . . . . ( 2 ) u(x,t)=\displaystyle\sum_{n=0}^{\infin}[A_ncos(cnπt)+B_nsin(cnπt)]sin(nπx)....(2) u ( x , t ) = n = 0 ∑ ∞ [ A n cos ( c nπ t ) + B n s in ( c nπ t )] s in ( nπ x ) .... ( 2 )
Is a solution of the equation.
Equation (2) is a solution if it satisfies the initial conditions;
If:
u ( x , 0 ) = Φ ( x ) = ∑ n = 0 ∞ X n ( x ) T n ( 0 ) = ∑ n = 0 ∞ A n s i n ( n π x ) u(x,0)=\Phi(x)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T_n(0)=\displaystyle\sum_{n=0}^{\infin}A_nsin(nπx) u ( x , 0 ) = Φ ( x ) = n = 0 ∑ ∞ X n ( x ) T n ( 0 ) = n = 0 ∑ ∞ A n s in ( nπ x )
And;
u t ( x , 0 ) = Ψ ( x ) = ∑ n = 0 ∞ X n ( x ) T n ′ ( 0 ) = ∑ n = 0 ∞ B n c n π s i n ( n π x ) u_t(x,0)=\Psi(x)=\displaystyle\sum_{n=0}^{\infin}X_n(x)T'_n(0)=\displaystyle\sum_{n=0}^{\infin}B_ncnπsin(nπx) u t ( x , 0 ) = Ψ ( x ) = n = 0 ∑ ∞ X n ( x ) T n ′ ( 0 ) = n = 0 ∑ ∞ B n c nπ s in ( nπ x )
Again,as long as Φ \Phi Φ and Ψ \Psi Ψ are piecewise continuously differentiable,then we can find A n A_n A n and B n B_n B n to satisfy these equations as follows;
A n = 2 ∫ 0 1 ϕ ( x ) s i n ( n π x ) d x A_n=2\int_0^1\phi(x)sin(nπx)dx A n = 2 ∫ 0 1 ϕ ( x ) s in ( nπ x ) d x
B n = 2 c n π ∫ 0 1 ψ ( x ) s i n ( n π x ) d x B_n=\frac{2}{cnπ}\int_0^1\psi(x)sin(nπx)dx B n = c nπ 2 ∫ 0 1 ψ ( x ) s in ( nπ x ) d x
Hence the complete general solution to equation (1) under the given conditions is by substituting these values in (2).
Comments