Xyp+y^2q+2x-xyz
Solution;
"xyp+y^2q+2x^2-xyz"
Rewrite as;
"xyp+y^2q=xyz-2x^2"
Here;
"P=xy"
"Q=y^2"
"R=xyz-2x^2"
Axillary equations are;
"\\frac{dx}{P}=\\frac{dy}{Q}=\\frac{dz}{R}"
"\\frac{dx}{xy}=\\frac{dy}{y^2}=\\frac{dz}{xyz-2x^2}" ......(1)
Taking the first two fractions in (1)
"\\frac{dx}{xy}=\\frac{dy}{y^2}"
Simplify;
"\\frac{dx}{x}=\\frac{dy}{y}"
Integrating respectively;
"log(x)=log(y)+log(c_1)"
Therefore;
"log(\\frac xy)=log(c_1)\\implies\\frac xy=_-^+c_1=k" .....(2)
Taking the last two equations in (1);
"\\frac{dy}{y^2}=\\frac{dz}{xyz-2x^2}"
Substituting (2);
"\\frac{dy}{y^2}=\\frac{dz}{ky^2z-2k^2y^2}"
Simplify as;
"kdy=\\frac{1}{z-2k}dz"
Integrating ;
"ky=log(z-2k)+c_2"
Using (2) as substitution;
"x-log(z-\\frac{2x}{y})=c_2" ....(3)
The general solution is given by (2) and (3);
"(\\frac xy,x-log(z-\\frac{2x}{y})=0"
Comments
Leave a comment