1. The second Newton's Law
Given "m=2\\ kg, g=9.81\\ m\/s^2"
"v'=-\\dfrac{1}{6}(v-58.86)"
"\\dfrac{dv}{v-58.86}=-\\dfrac{1}{6}dt"
integrate
"v(0)=0=>c_1=-58.86"
"v(t)=58.86-58.86e^{-t\/6}"
"v(1.5)=58.86-58.86e^{-1.5\/6}"
"v(1.5)=13.02\\ m\/s"
"v(t)=-h'(t)"
"h(t)=-\\int v dt=-\\int(58.86-58.86e^{-t\/6})dt"
"=-58.86t-353.16e^{-t\/6}+c_2"
"h(0)=30=-353.16+c_2=>c_2=383.16"
"h(t)=-58.86t-353.16e^{-t\/6}+383.16"
"h(1.5)=-58.86(1.5)-353.16e^{-1.5\/6}+383.16"
"h(1.5)=19.83\\ m"
2. Let "s(t) =" amount, in lb of salt at time "t." Then we have
"\\dfrac{ds}{dt}="(rate of salt into tank) − (rate of salt out of tank)
So we get the differential equation
"\\dfrac{ds}{dt}+\\dfrac{4s}{25+2t}=24"
Integrating factor
"\\dfrac{d}{dt}((25+2t)^{2}s)=24(25+2t)^{2}"
"\\int d((25+2t)^{2}s)=24\\int(25+2t)^{2}dt"
"(25+2t)^{2}s=24(\\dfrac{1}{6})(25+2t)^{3}+c_1"
"s(t)=4(25+2t)+c_1(25+2t)^{-2}"
"s(0)=100+c_1(25)^{-2}=0"
"c_1=-62500"
"s(t)=4(25+2t)-62500(25+2t)^{-2}"
"s(5)=4(25+2(5))-62500(25+2(5))^{-2}"
"s(5)=88.98\\ lb""s(t)=4(25+2t)-62500(25+2t)^{-2}=50"
Let "y(t)=s(t)-50"
"y(t)=4(25+2t)-62500(25+2t)^{-2}-50"Solve graphically the equation "y=0"
"t=2.47\\ min"
Comments
Leave a comment