1. Let "s(t) =" amount, in lb of salt at time "t." Then we have
"\\dfrac{ds}{dt}="(rate of salt into tank) − (rate of salt out of tank)
So we get the differential equation
"\\dfrac{ds}{dt}+\\dfrac{4s}{25+2t}=24"
Integrating factor
"\\dfrac{d}{dt}((25+2t)^{2}s)=24(25+2t)^{2}"
"\\int d((25+2t)^{2}s)=24\\int(25+2t)^{2}dt"
"(25+2t)^{2}s=24(\\dfrac{1}{6})(25+2t)^{3}+c_1"
"s(t)=4(25+2t)+c_1(25+2t)^{-2}"
"s(0)=100+c_1(25)^{-2}=0"
"c_1=-62500"
"s(t)=4(25+2t)-62500(25+2t)^{-2}"
"s(5)=4(25+2(5))-62500(25+2(5))^{-2}"
"s(5)=88.98\\ lb"
"s(t)=4(25+2t)-62500(25+2t)^{-2}=50"
Let "y(t)=s(t)-50"
Solve graphically the equation "y=0"
"t=2.47\\ min"
2.
"2\\cdot10^{4}q'+\\dfrac{1}{6\\cdot10^{-6}}q=50"
"q'+\\dfrac{25}{3}q=0.0025"
"q'=-\\dfrac{25}{3}(q-0.0006)"
"\\dfrac{dq}{q-0.0003}=-\\dfrac{25}{3}dt"
Integrate
Given "q(0)=10^{-6}"
"c_1=-0.000299"
"q(t)=0.0003-0.000299e^{-25t\/3}"
"q(0.01)=0.0003-0.000299e^{-25(0.01)\/3}"
"=24.91\\cdot10^{-6} (C)"
"24.91\\ \\mu C"
"=\\dfrac{0.007475}{3}e^{-25t\/3}"
"i(0.05)=\\dfrac{0.007475}{3}e^{-25(0.05)\/3}=0.0016426(A)"
"=1.64(\\ mA)"
"1.64\\ mA"
Comments
Leave a comment