A string 50.0 cm long has a mass per unit length equal to 20.0x10^-5 kg/m. To what tension should this string be stretched if it's fundamental frequency is to be 20.0 Hz.
l=50 cm=0.5 mm=Ml=20×10−5 kg/ml=20 Hzf=12lTmf2=14l2×TmT=f2×4l2×m=202×4×0.52×20×10−5=800×10−4=8×10−2 Nl = 50 \;cm = 0.5 \;m \\ m = \frac{M}{l} = 20 \times 10^{-5} \; kg/m \\ l = 20 \;Hz \\ f = \frac{1}{2l} \sqrt{\frac{T}{m}} \\ f^2 = \frac{1}{4l^2} \times \frac{T}{m} \\ T = f^2 \times 4l^2 \times m \\ = 20^2 \times 4 \times 0.5^2 \times 20 \times 10^{-5} \\ = 800 \times 10^{-4} \\ = 8 \times 10^{-2} \;Nl=50cm=0.5mm=lM=20×10−5kg/ml=20Hzf=2l1mTf2=4l21×mTT=f2×4l2×m=202×4×0.52×20×10−5=800×10−4=8×10−2N
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment