Interference fringes are produced by monochromatic light falling normally on a wedge shaped film of cellophane of refractive index 1.4. If angle of wedge is 20 seconds of an arc and the distance between successive fringes is 0.25 cm, calculate the wavelength of light.
μ=1.4,θ=20′′=20°60×60=1°180=1180×π180 radianβ=0.25 cmλ=?\mu=1.4,\\\theta=20''=\dfrac{20\degree}{60\times 60}=\dfrac{1\degree}{180}=\dfrac{1}{180}\times \dfrac{\pi}{180}\ radian\\\beta=0.25\ cm\\\lambda=?μ=1.4,θ=20′′=60×6020°=1801°=1801×180π radianβ=0.25 cmλ=?
We know that,
β=λ2μθ or λ=2βμθ ∴ λ=2×0.25×1.4×π180×180 λ=6.787×10−5cm=6787A°\beta=\dfrac{\lambda}{2\mu\theta}\ \ or\ \ \lambda=2\beta\mu\theta\\\ \\\therefore\ \lambda=2\times 0.25\times 1.4\times \dfrac{\pi}{180\times 180}\\\ \\\lambda=6.787\times 10^{-5}cm= 6787 A\degreeβ=2μθλ or λ=2βμθ ∴ λ=2×0.25×1.4×180×180π λ=6.787×10−5cm=6787A°
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment