As per the given question,
wavelength of the wave "(\\lambda)=439nm"
separation between the slit "(d)=26\\mu m"
width of the interference maxima =20.0 cm
Hence "20\/2=10cm"
total number of interference maxima (m)=3
Let the initial distance between the slit and the screen is D
now, we know that "y=\\dfrac{m\\lambda D}{d}"
"D=\\dfrac{yd}{m\\lambda}=\\dfrac{10\\times 10^{-2}\\times 26\\times 10^{-6}}{3\\times 439\\times10^{-9}}=1.97m \\simeq 2m"
Now, for the second case y=20,
m=3
"(d)=26\\mu m"
"D=\\dfrac{yd}{m\\lambda}=\\dfrac{20\\times 10^{-2}\\times 26\\times 10^{-6}}{3\\times 439\\times10^{-9}}=3.95m \\simeq 4m"
Comments
Leave a comment