Let the intensities of individual source be 16I & I16 I\ \ \&\ I16I & I
Bright fringe (maximum) intensity,
Imax=(I1+I2)2\newline I_{max} = (\sqrt{I_1 } + \sqrt{I_2})^2Imax=(I1+I2)2
Dark fringe (minimum) intensity,
Imin=(I1−I2)2I _ {min} =(\sqrt I _1 − \sqrt I _2 ) ^2Imin=(I1−I2)2
ImaxImin=(I1+I2)2(I1−I2)2\dfrac {I_{ max}} { I _{ min} } =\dfrac{ ( \sqrt I _ 1 + \sqrt I _ 2 ) ^ 2} { ( \sqrt I _1 - \sqrt I _ 2 ) ^ 2 } IminImax=(I1−I2)2(I1+I2)2
⟹ \implies⟹ ImaxImin=(4+1)2(4−1)2=25:9\dfrac{I_{max}}{I_{min}}={\dfrac{(4+1)^2} {(4-1)^2}}=25:9IminImax=(4−1)2(4+1)2=25:9
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment