Let the intensities of individual source be "16 I\\ \\ \\&\\ I"
Bright fringe (maximum) intensity,
"\\newline\n\nI_{max} = (\\sqrt{I_1 } + \\sqrt{I_2})^2"
Dark fringe (minimum) intensity,
"I _\n{min}\n\u200b\t\n =(\\sqrt \nI \n_1\n\u200b\t\n \n\u200b\t\n \u2212 \\sqrt\nI \n_2\n\u200b\t\n \n\u200b\t\n ) \n^2"
"\\dfrac {I_{ \nmax}}\t\n {\nI _{\nmin}\n\u200b}\n\t\n \n\u200b\t\n =\\dfrac{\n( \\sqrt\nI _\n1\t\n + \\sqrt\nI _\n2\t\n ) ^\n2}\n {\n( \\sqrt\nI \n_1\t\n - \\sqrt\nI _\n2\t\n ) ^\n2\n }\n\u200b"
"\\implies" "\\dfrac{I_{max}}{I_{min}}={\\dfrac{(4+1)^2} {(4-1)^2}}=25:9"
Comments
Leave a comment