We need to calculate the maximum frequency of waves and calculate the inter atomic force
Solution:
Given
Mass of atoms = "m = 28 \\space amu = 28 \\times 1.67 \\times 10^{-27} kg"
speed of sound in the lattice ="v_s= 11.6 \\space km \/s = 11.6 \\times 10^3 m\/s"
lattice constant = "a = 4.91A^o = 4.91 \\times 10^{-10} m\/s"
A).
The maximum frequency of waves which was transmitted by the lattice is
"w_m =\\frac {2}{a} \\times v_s = \\frac {2}{4.91 \\times 10^{-10} } \\times 11.6 \\times 10^3"
"w_m =4.725 \\times 10^{13} rad\/sec"
B).
"w_m = \\sqrt {\\frac {4\\beta}{m}}"
Squaring on both sides
"(w_m)^2 = {\\frac {4\\beta}{m}}"
"\\beta = \\frac {m \\times \\beta^2 } {4} = \\frac {28 \\times (4.725 \\times 10^{13})^2 } {4}"
"\\beta = \\frac {28 \\times 1.67 \\times 10^{-27} \\times 22.325 \\times 10^{26}} {4}"
"\\beta = \\frac {1043.917 \\times 10^{-1}}{4} =26.0979 N\/m"
Answer: "\\beta = 26.0979 \\space N\/m"
Comments
Leave a comment