We know for the simple compressible substance,
du=CvdT+(dvdu)Tdv
ds=TCvdT+T1[(dvdu)T+P]dv
Now, taking entropy as a function of temperature and volume,
∂T∂sv=TCv
Now, using maxwell relation,
(∂V∂s)T=(∂T∂P)s=T1[(∂v∂u)T+P]
From the above, we will get,
(∂v∂u)T=T(∂T∂P)v−P
Now, we know that PV=nRT
(∂T∂P)v=VR
(∂v∂u)T=T(VR)v−P=P−P=0
So,
ds=TCpdT+[(dTdV)P]dP
From the above,
(dTdP)v=T(∂V/∂T)PCp−Cv
now, β=V1(∂T∂V)P
k=−V1(∂T∂V)T
Hence, from the above, we can write it as
(∂T∂P)v(∂V∂T)P(∂P∂V)=−1
Comments