As per the given question,
Average potential energy of the molecules
"u=\\dfrac{-a}{NV}"
Free volume per molecule, "V_f=\\dfrac{(V-b)}{N}"
The molecular partition function,
"z=(\\dfrac{2\\pi mkT}{h^2})^{\\frac{3}{2}}\\int_o^{v_f}e^{\\frac{-u}{kT}}dv"
"\\Rightarrow z=(\\dfrac{2\\pi mkT}{h^2})^{\\frac{3}{2}}(v_f)e^{\\frac{-u}{kT}}"
Now, as per the definition, substituting the values,
"\\ln z=\\dfrac{3}{2}\\ln(\\dfrac{2\\pi mkT}{h^2})^{\\frac{3}{2}}+\\ln (V-b)+\\dfrac{a}{VNkT}"
Now, free energy equation can be written as,
"F=-NkT(\\dfrac{3}{2}\\ln(\\dfrac{2\\pi mkT}{h^2})^{\\frac{3}{2}}+\\ln (V-b))-\\dfrac{a}{V}"
The pressure of such gas containing N molecule in volume V,
"P=NkT(\\dfrac{\\partial \\ln z}{\\partial V})_T=\\dfrac{NkT}{V-b}-\\dfrac{a}{V^2}"
if a=0, then
"P(V-b)=NkT"
Comments
Leave a comment