Question #108689
Using relation for accessible state,(omega)=B(v-b)^Nf(E) here f(E) is function of energy only. Obtain equation of state p(v-b)=NkT
1
Expert's answer
2020-04-15T10:32:48-0400

As per the given question,

Average potential energy of the molecules

u=aNVu=\dfrac{-a}{NV}

Free volume per molecule, Vf=(Vb)NV_f=\dfrac{(V-b)}{N}

The molecular partition function,

z=(2πmkTh2)32ovfeukTdvz=(\dfrac{2\pi mkT}{h^2})^{\frac{3}{2}}\int_o^{v_f}e^{\frac{-u}{kT}}dv

z=(2πmkTh2)32(vf)eukT\Rightarrow z=(\dfrac{2\pi mkT}{h^2})^{\frac{3}{2}}(v_f)e^{\frac{-u}{kT}}

Now, as per the definition, substituting the values,

lnz=32ln(2πmkTh2)32+ln(Vb)+aVNkT\ln z=\dfrac{3}{2}\ln(\dfrac{2\pi mkT}{h^2})^{\frac{3}{2}}+\ln (V-b)+\dfrac{a}{VNkT}

Now, free energy equation can be written as,

F=NkT(32ln(2πmkTh2)32+ln(Vb))aVF=-NkT(\dfrac{3}{2}\ln(\dfrac{2\pi mkT}{h^2})^{\frac{3}{2}}+\ln (V-b))-\dfrac{a}{V}

The pressure of such gas containing N molecule in volume V,

P=NkT(lnzV)T=NkTVbaV2P=NkT(\dfrac{\partial \ln z}{\partial V})_T=\dfrac{NkT}{V-b}-\dfrac{a}{V^2}

if a=0, then

P(Vb)=NkTP(V-b)=NkT


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS