Question #108286
A cooper cube whose mass mc 100 g is heated to 300 oC. ) Then the cube is dropped intro glass baker whose heat capacity Cb 200 J/K, and containing water whose heat capacity CW 800 J/K at initial temperature 25 oC then the common final temperature is ( the specific heat of cooper 400 J/Kg.k
1
Expert's answer
2020-04-08T10:32:35-0400

The heat lost by the copper cube

Qlost=cmΔT=400Jkg×K×0.1kg×(TinitialTfinal)Q_{lost} = cm \Delta T=400 \frac{J}{kg\times K}\times 0.1 kg \times (T_{initial}-T_{final})

Tinitial(K)=273+300=573KT_{initial} (K) = 273 + 300 = 573 K


Qlost=400Jkg×K×0.1kg×(573KTfinal)Q_{lost} = 400 \frac{J}{kg\times K}\times 0.1 kg \times (573 K - T_{final})


The heat gained by glass baker

Qgl.baker=Cb×ΔT=Cb×(TfinalTinitial)Q_{gl.baker}= C_{b}\times \Delta T = C_{b}\times (T_{final}- T_{initial})

Tinitial(K)=273+25=298KT_{initial}(K)= 273+25 = 298 K

Qgl.baker=200JK×(Tfinal298K)Q_{gl.baker} = 200 \frac{J}{K} \times (T_{final}-298 K)


The heat gained by water

Qwater=Cw×ΔT=800JK(Tfinal298K)Q_{water} = C_w\times \Delta T = 800 \frac{J}{K}(T_{final}-298K)


As Qlost=QgainedQ_{lost} = Q _{gained} then

Qlost=Qgl.baker+QwaterQ_{lost} = Q_{gl.baker} + Q_{water}

400Jkg×K×0.1kg×(573KTfinal)=200JK×(Tfinal298K)+800JK×(Tfinal298K)400 \frac{J}{kg\times K}\times 0.1 kg\times (573K - T_{final})= 200\frac{J}{K}\times(T_{final}-298 K)+800 \frac {J}{K}\times (T_{final}-298 K)

Solve for TfinalT_{final}

Tfinal=309KT_{final} = 309 K

Tfinal(C)=309273=36CT_{final}(C ^\circ )= 309-273 = 36 C^\circ


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS