Question #232999

Three particles of masses 3.724kg, 3.236 kg, and 19.86 kg form an equilateral triangle of edge length 289 cm. If the 3.724kg mass is at the origin, and the 3.236kg mass is along the x- axis, and the 19.86kg mass is in the positive x, and positive y quadrant, the centre of mass of the whole system will be at


1
Expert's answer
2021-09-03T15:26:04-0400

Let A,B,C the points where three particles are located\text{Let }A,B,C \text{ the points where three particles are located}

A(0,0);ma=3.724kgA(0,0);m_a= 3.724 kg

B(2.89,0);mb=3.236kgB(2.89,0);m_b=3.236kg

Let’s draw the height of the CH to the AB side\text{Let's draw the height of the } CH \text{ to the } AB \text{ side}

CH is also the median since the triangle is equilateralCH \text{ is also the median since the triangle is equilateral}

AH=AB2=2.892=1.445mAH = \frac{AB}{2}= \frac{2.89}{2}=1.445m

CH=AC2AH2=2.8921.44522.5mCH =\sqrt{AC^2-AH^2}=\sqrt{2.89^2-1.445^2}\approx2.5m

C(1.445,2.5);mc=19.86C(1.445,2.5);m_c=19.86

Let point O be the center of gravity of the particles\text{Let point } O \text{ be the center of gravity of the particles}

xo=xama+xbmb+xcmcma+mb+mcx_o= \frac{x_am_a+x_bm_b+x_cm_c}{m_a+m_b+m_c}


xo=03.724+2.893.236+1.44519.863.724+3.236+19.861.42mx_o =\frac{0*3.724+2.89*3.236+1.445*19.86}{3.724+3.236+19.86}\approx1.42m


yo=yama+ybmb+ycmcma+mb+mcy_o= \frac{y_am_a+y_bm_b+y_cm_c}{m_a+m_b+m_c}


xo=03.724+03.236+2.519.863.724+3.236+19.861.85mx_o =\frac{0*3.724+0*3.236+2.5*19.86}{3.724+3.236+19.86}\approx1.85m

O(1.42;1.85)O(1.42;1.85)

Answer : O(1.42;1.85)coordinates of the center of gravity in meters\text{Answer : }O(1.42;1.85) -\text{coordinates of the center of gravity in meters}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS