Question #167945

A particle of rest mass m0 is moving with speed v. Its classical kinetic energy is Kcl = 1 2m0v 2 . Let Krel be the relativistic expression for its kinetic energy. By expanding Krel/Kcl in powers of v 2/c2 , estimate the value of v 2/c2 for which Krel differs from Kcl by 10 percent. For this value of v 2/c2 , what is the kinetic energy in MeV of an electron and a proton? (Kleppner 13.3)


1
Expert's answer
2021-03-03T07:56:55-0500

Given,

Rest of the particle =mo=m_o

Speed of the particle =v=v

Classical kinetic energy Kcl=mov2.2K_{cl }= \frac{m_ov^2 .}{2}

Relativistic kinetic energy Krel=(1γ)moc2K_{rel}=(1-\gamma) m_oc^2

KrelKclKrel×100=10%\frac{K_{rel}-K_{cl}}{K_{rel}}\times 100=10\%


moc2mov2.2moc2=110\Rightarrow \frac{m_oc^2\frac{-m_ov^2 .}{2}}{m_oc^2}=\frac{1}{10}


c2v22c2=110\Rightarrow \frac{c^2-\frac{v^2}{2}}{c^2}=\frac{1}{10}


v22c2=910\Rightarrow \frac{v^2}{2c^2}=\frac{9}{10}

\Rightarrow


Krel=v22c2mc2=12mv2=KclassK_{rel}=\frac{v^2}{2c^2}mc^2=\frac{1}{2}mv^2=K_{class}


Krel=910mc2=12mv2=KclassK_{rel}=\frac{9}{10}mc^2=\frac{1}{2}mv^2=K_{class}

For electron, m=9.1×1031kgm=9.1\times 10^{-31}kg

mass of proton (m)=1.6×1027kg1.6\times 10^{-27}kg

Now, substituting the values,

Ke=9×9.1×1031×3×108×3×10810K_{e}=\frac{9\times9.1\times 10^{-31}\times 3\times 10^8\times 3\times 10^8}{10}

=245.7×1024×3×108J=245.7\times 10^{-24}\times 3\times 10^8J

=2.45×1022×3×108J=2.45\times10^{-22}\times 3\times 10^8J

=0.4.5MeV=0.4.5MeV

For proton

Kp=9×1.6×1027×(3×108)210K_{p}=\frac{9\times 1.6\times 10^{-27}\times (3\times 10^8)^2}{10}

=129.6×10121.6×1013MeV=\frac{129.6\times 10^{-12}}{1.6\times 10^{-13} } MeV

=810MeV=810MeV



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS