A particle of rest mass m0 is moving with speed v. Its classical kinetic energy is Kcl = 1 2m0v 2 . Let Krel be the relativistic expression for its kinetic energy. By expanding Krel/Kcl in powers of v 2/c2 , estimate the value of v 2/c2 for which Krel differs from Kcl by 10 percent. For this value of v 2/c2 , what is the kinetic energy in MeV of an electron and a proton? (Kleppner 13.3)
Given,
Rest of the particle "=m_o"
Speed of the particle "=v"
Classical kinetic energy "K_{cl }= \\frac{m_ov^2 .}{2}"
Relativistic kinetic energy "K_{rel}=(1-\\gamma) m_oc^2"
"\\frac{K_{rel}-K_{cl}}{K_{rel}}\\times 100=10\\%"
"\\Rightarrow \\frac{m_oc^2\\frac{-m_ov^2 .}{2}}{m_oc^2}=\\frac{1}{10}"
"\\Rightarrow \\frac{c^2-\\frac{v^2}{2}}{c^2}=\\frac{1}{10}"
"\\Rightarrow \\frac{v^2}{2c^2}=\\frac{9}{10}"
"\\Rightarrow"
"K_{rel}=\\frac{v^2}{2c^2}mc^2=\\frac{1}{2}mv^2=K_{class}"
"K_{rel}=\\frac{9}{10}mc^2=\\frac{1}{2}mv^2=K_{class}"
For electron, "m=9.1\\times 10^{-31}kg"
mass of proton (m)="1.6\\times 10^{-27}kg"
Now, substituting the values,
"K_{e}=\\frac{9\\times9.1\\times 10^{-31}\\times 3\\times 10^8\\times 3\\times 10^8}{10}"
"=245.7\\times 10^{-24}\\times 3\\times 10^8J"
"=2.45\\times10^{-22}\\times 3\\times 10^8J"
"=0.4.5MeV"
For proton
"K_{p}=\\frac{9\\times 1.6\\times 10^{-27}\\times (3\\times 10^8)^2}{10}"
"=\\frac{129.6\\times 10^{-12}}{1.6\\times 10^{-13} } MeV"
"=810MeV"
Comments
Leave a comment