If a mass of 0.8 kg is constructed at one end of a 0.5m long fiber and rotates in a horizontal circle with an angle of 10 rads, then its angular momentum about the center of rotation, in SI units
Explanations & Calculations
"\\qquad\\qquad\n\\begin{aligned}\n\\small \\uparrow F&= \\small ma\\\\\n\\small T\\cos\\theta-mg&= \\small0(as \\uparrow a=0)\\\\\n\\small T\\cos \\theta &= \\small mg\\cdots(1)\\\\\n\\\\\n\\small \\leftarrow F&= \\small ma\\\\\n\\small T\\sin\\theta &=\\small m\\frac{v^2}{r}\\cdots(2)\\\\\n\\end{aligned}\\\\\n\\\\\n\\small\\qquad \\text{By (2)\/(1),}\\\\\n\\qquad\\qquad\\qquad\\qquad\n\\begin{aligned}\n\\small \\tan\\theta &= \\small \\frac{v^2}{rg}\\\\\n\\small v&= \\small \\sqrt{\\tan\\theta\\cdot rg}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small r&= \\small l\\sin10=0.5\\sin10=0.0868m\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small v&= \\small \\sqrt{\\tan10\\times0.0868m\\times 9.8ms^{-2}}\\\\\n&= \\small 0.387ms^{-1}\n\\end{aligned}"
"\\qquad\\qquad\n\\begin{aligned}\n\\small &= \\small 0.8kg\\times 0.387ms^{-1}\\times 0.0868m\\\\\n&= \\small 0.0269kg m^2s^{-1}\n\\end{aligned}"
Comments
Thank you for the answer
Leave a comment