Answer to Question #166181 in Mechanics | Relativity for Florence Wilbarth

Question #166181

A cylindrical copper rod length 1.50m and radius 2.0cm is insulated to prevent heat loss through its curved surface.one end is attached to a thermal reservoir fixed at 300°C and the other is attached to a thermal reservoir fixed at 30°C.What is the rate at which entropy increases for the rod reservoirs system?



1
Expert's answer
2021-02-24T12:47:59-0500

Explanations & Calculations


  • The rate of heat transfer can be calculated as follows

"\\qquad\\qquad\n\\begin{aligned}\n\\small R&=\\small \\frac{Q}{t}=\\frac{kA\\Delta \\theta}{d}\\\\\n&= \\small \\frac{385WK^{-1}m^{-1}\\times\\pi (0.02m)^2\\times(300-30)K}{1.5m}\\\\\n&=\\small 87.085\\,W\n\\end{aligned}"


  • The entropy change in the 300C resevoir

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta S_{res}&= \\small \\frac{Q}{300+273}=\\frac{Q}{573K}\n\\end{aligned}"

  • The entropy change in 30C resevoir

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta S_{sink}&= \\small \\frac{Q}{30+273K}=\\frac{Q}{303K}\n\\end{aligned}"

  • The entropy change in the system

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\Delta S_{uni}&= \\small \\frac{Q}{303}-\\frac{Q}{573}\\\\\n&= \\small Q\\Big[\\frac{1}{303}-\\frac{1}{273}\\Big]\\\\\n\\end{aligned}"

  • Therefore, the rate of entropy change

"\\qquad\\qquad\n\\begin{aligned}\n\\small \\frac{d\\Delta S}{dt}&= \\small \\frac{Q}{t}\\Big[\\frac{1}{303}-\\frac{1}{573}\\Big]\\\\\n&=\\small 87.085\\Big[1.555\\times10^{-3}K^{-1}\\Big]\\\\\n&= \\small 0.135\\,WK^{-1} (>0\\therefore \\text{spontaneous})\n\\end{aligned}"


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS