Question #165758

Find the central force necessary to make a particle describe the lemniscate r^2 = a^2 cos 2θ, where a is a constant


1
Expert's answer
2021-02-23T10:05:25-0500

Basic equation of celestial mechanics:

d2udθ2+u=f(1/u)mh2u2\dfrac{d^2u}{d\theta^{2}}+u=\dfrac{-f(1/u)}{mh^2u^2} (1)


Equation of lemniscate,

r2=a2cos2θr^2=a^2cos2\theta (2)

Put r=1/ur=1/u in equation (2), we get

1u2=a2cos2θ\dfrac{1}{u^2}=a^2cos2\theta

u=1asec2θ\Rightarrow u=\dfrac{1}{a}\sqrt{sec2\theta} (3)

Differentiating equation (3) with respect to θ\theta , we get

dudθ=1a×12sec2θ×sec2θ×tan2θ×2\dfrac{du}{d\theta}=\dfrac{1}{a}\times\dfrac{1}{\cancel2\sqrt{sec2\theta}}\times sec2\theta\times tan2\theta\times\cancel2

dudθ=1asec2θ1/2tan2θ\Rightarrow\dfrac{du}{d\theta}=\dfrac{1}{a}sec2\theta^{1/2}tan2\theta (4)

Again differentiating the above equation

d2udθ2=1a(sec1/22θtan22θ+2sec5/22θ)\dfrac{d^2u}{d\theta^2}=\dfrac{1}{a}(sec^{1/2}2\theta tan^{2}2\theta+2sec^{5/2}2\theta) (5)

Adding equation (3) and (5) we get

d2udθ2+u=1a[sec1/22θ{tan22θ+1}+2sec5/22θ]\dfrac{d^2u}{d\theta^2}+u=\dfrac{1}{a}[sec^{1/2}2\theta \{tan^22\theta +1\}+2sec^{5/2}2\theta]

d2udθ2+u=1a[3sec5/22θ]\Rightarrow\dfrac{d^2u}{d\theta^2}+u=\dfrac{1}{a}[3sec^{5/2}2\theta]

=3×1a×a5r5=3\times\dfrac{1}{a}\times \dfrac{a^5}{r^5} from eq. (3) and (2)

=3a4r5=3a^4r^{-5} (6)


Substituting value of equation (6) in (1)

3a4r5=f(r)mh2r23a^4r^{-5}=\dfrac{-f(r)}{mh^2r^{-2}}

f(r)=3a4mh2r7\Rightarrow f(r)=\dfrac{-3a^4mh^2}{r^7}

\therefore The force f(r) will make a particle describe lemniscate shaped orbit.

\dfrac{}{}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS