Basic equation of celestial mechanics:
d 2 u d θ 2 + u = − f ( 1 / u ) m h 2 u 2 \dfrac{d^2u}{d\theta^{2}}+u=\dfrac{-f(1/u)}{mh^2u^2} d θ 2 d 2 u + u = m h 2 u 2 − f ( 1/ u ) (1)
Equation of lemniscate,
r 2 = a 2 c o s 2 θ r^2=a^2cos2\theta r 2 = a 2 cos 2 θ (2)
Put r = 1 / u r=1/u r = 1/ u in equation (2), we get
1 u 2 = a 2 c o s 2 θ \dfrac{1}{u^2}=a^2cos2\theta u 2 1 = a 2 cos 2 θ
⇒ u = 1 a s e c 2 θ \Rightarrow u=\dfrac{1}{a}\sqrt{sec2\theta} ⇒ u = a 1 sec 2 θ (3)
Differentiating equation (3) with respect to θ \theta θ , we get
d u d θ = 1 a × 1 2 s e c 2 θ × s e c 2 θ × t a n 2 θ × 2 \dfrac{du}{d\theta}=\dfrac{1}{a}\times\dfrac{1}{\cancel2\sqrt{sec2\theta}}\times sec2\theta\times tan2\theta\times\cancel2 d θ d u = a 1 × 2 sec 2 θ 1 × sec 2 θ × t an 2 θ × 2
⇒ d u d θ = 1 a s e c 2 θ 1 / 2 t a n 2 θ \Rightarrow\dfrac{du}{d\theta}=\dfrac{1}{a}sec2\theta^{1/2}tan2\theta ⇒ d θ d u = a 1 sec 2 θ 1/2 t an 2 θ (4)
Again differentiating the above equation
d 2 u d θ 2 = 1 a ( s e c 1 / 2 2 θ t a n 2 2 θ + 2 s e c 5 / 2 2 θ ) \dfrac{d^2u}{d\theta^2}=\dfrac{1}{a}(sec^{1/2}2\theta tan^{2}2\theta+2sec^{5/2}2\theta) d θ 2 d 2 u = a 1 ( se c 1/2 2 θt a n 2 2 θ + 2 se c 5/2 2 θ ) (5)
Adding equation (3) and (5) we get
d 2 u d θ 2 + u = 1 a [ s e c 1 / 2 2 θ { t a n 2 2 θ + 1 } + 2 s e c 5 / 2 2 θ ] \dfrac{d^2u}{d\theta^2}+u=\dfrac{1}{a}[sec^{1/2}2\theta \{tan^22\theta +1\}+2sec^{5/2}2\theta] d θ 2 d 2 u + u = a 1 [ se c 1/2 2 θ { t a n 2 2 θ + 1 } + 2 se c 5/2 2 θ ]
⇒ d 2 u d θ 2 + u = 1 a [ 3 s e c 5 / 2 2 θ ] \Rightarrow\dfrac{d^2u}{d\theta^2}+u=\dfrac{1}{a}[3sec^{5/2}2\theta] ⇒ d θ 2 d 2 u + u = a 1 [ 3 se c 5/2 2 θ ]
= 3 × 1 a × a 5 r 5 =3\times\dfrac{1}{a}\times \dfrac{a^5}{r^5} = 3 × a 1 × r 5 a 5 from eq. (3) and (2)
= 3 a 4 r − 5 =3a^4r^{-5} = 3 a 4 r − 5 (6)
Substituting value of equation (6) in (1)
3 a 4 r − 5 = − f ( r ) m h 2 r − 2 3a^4r^{-5}=\dfrac{-f(r)}{mh^2r^{-2}} 3 a 4 r − 5 = m h 2 r − 2 − f ( r )
⇒ f ( r ) = − 3 a 4 m h 2 r 7 \Rightarrow f(r)=\dfrac{-3a^4mh^2}{r^7} ⇒ f ( r ) = r 7 − 3 a 4 m h 2
∴ \therefore ∴ The force f(r) will make a particle describe lemniscate shaped orbit.
\dfrac{}{}
Comments