Find the central force necessary to make a particle describe the lemniscate r^2 = a^2 cos 2θ, where a is a constant
Basic equation of celestial mechanics:
"\\dfrac{d^2u}{d\\theta^{2}}+u=\\dfrac{-f(1\/u)}{mh^2u^2}" (1)
Equation of lemniscate,
"r^2=a^2cos2\\theta" (2)
Put "r=1\/u" in equation (2), we get
"\\dfrac{1}{u^2}=a^2cos2\\theta"
"\\Rightarrow u=\\dfrac{1}{a}\\sqrt{sec2\\theta}" (3)
Differentiating equation (3) with respect to "\\theta" , we get
"\\dfrac{du}{d\\theta}=\\dfrac{1}{a}\\times\\dfrac{1}{\\cancel2\\sqrt{sec2\\theta}}\\times sec2\\theta\\times tan2\\theta\\times\\cancel2"
"\\Rightarrow\\dfrac{du}{d\\theta}=\\dfrac{1}{a}sec2\\theta^{1\/2}tan2\\theta" (4)
Again differentiating the above equation
"\\dfrac{d^2u}{d\\theta^2}=\\dfrac{1}{a}(sec^{1\/2}2\\theta tan^{2}2\\theta+2sec^{5\/2}2\\theta)" (5)
Adding equation (3) and (5) we get
"\\dfrac{d^2u}{d\\theta^2}+u=\\dfrac{1}{a}[sec^{1\/2}2\\theta \\{tan^22\\theta +1\\}+2sec^{5\/2}2\\theta]"
"\\Rightarrow\\dfrac{d^2u}{d\\theta^2}+u=\\dfrac{1}{a}[3sec^{5\/2}2\\theta]"
"=3\\times\\dfrac{1}{a}\\times \\dfrac{a^5}{r^5}" from eq. (3) and (2)
"=3a^4r^{-5}" (6)
Substituting value of equation (6) in (1)
"3a^4r^{-5}=\\dfrac{-f(r)}{mh^2r^{-2}}"
"\\Rightarrow f(r)=\\dfrac{-3a^4mh^2}{r^7}"
"\\therefore" The force f(r) will make a particle describe lemniscate shaped orbit.
"\\dfrac{}{}"
Comments
Leave a comment