For this simple harmonic oscillation
"a=-\\omega^2x"
"a=\\frac{d^2x}{dt^2}"
"\\frac{d^2x}{dt^2}=-\\omega^2x"
Substitute "x(t)=e^{\\lambda t}"
We have
"e^{\\lambda t}(\\omega^2+\\lambda^2)=0"
"e^{\\lambda t}\\neq0"
"\\lambda=i\\omega" or "\\lambda=-i\\omega"
"x_1(t)=C_1e^{-i\\omega t}" and "x_2(t)=C_2e^{i\\omega t}"
The general solution is the sum of the above solutions
"x(t)=C_1e^{-i\\omega t}+C_2e^{i\\omega t}"
Using the Euler's identity we get
"x(t)=(C_1+C_2)\\cos(\\omega t)+i(-C_1+C_2)\\sin(\\omega t)"
In general
"x(t)=A_1\\cos(\\omega t)+A_2\\sin(\\omega t)"
or
"x(t)=A\\cos(\\omega t+\\phi)"
Comments
Leave a comment