Question #104535
Prove the solutions to this simple harmonic oscillation a=w^2x
1
Expert's answer
2020-03-05T09:36:34-0500

For this simple harmonic oscillation


a=ω2xa=-\omega^2x


a=d2xdt2a=\frac{d^2x}{dt^2}


d2xdt2=ω2x\frac{d^2x}{dt^2}=-\omega^2x


Substitute x(t)=eλtx(t)=e^{\lambda t}


We have


eλt(ω2+λ2)=0e^{\lambda t}(\omega^2+\lambda^2)=0


eλt0e^{\lambda t}\neq0


λ=iω\lambda=i\omega or λ=iω\lambda=-i\omega


x1(t)=C1eiωtx_1(t)=C_1e^{-i\omega t} and x2(t)=C2eiωtx_2(t)=C_2e^{i\omega t}


The general solution is the sum of the above solutions


x(t)=C1eiωt+C2eiωtx(t)=C_1e^{-i\omega t}+C_2e^{i\omega t}


Using the Euler's identity we get


x(t)=(C1+C2)cos(ωt)+i(C1+C2)sin(ωt)x(t)=(C_1+C_2)\cos(\omega t)+i(-C_1+C_2)\sin(\omega t)


In general


x(t)=A1cos(ωt)+A2sin(ωt)x(t)=A_1\cos(\omega t)+A_2\sin(\omega t)


or


x(t)=Acos(ωt+ϕ)x(t)=A\cos(\omega t+\phi)










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS