For this simple harmonic oscillation
a=−ω2x
a=dt2d2x
dt2d2x=−ω2x
Substitute x(t)=eλt
We have
eλt(ω2+λ2)=0
eλt=0
λ=iω or λ=−iω
x1(t)=C1e−iωt and x2(t)=C2eiωt
The general solution is the sum of the above solutions
x(t)=C1e−iωt+C2eiωt
Using the Euler's identity we get
x(t)=(C1+C2)cos(ωt)+i(−C1+C2)sin(ωt)
In general
x(t)=A1cos(ωt)+A2sin(ωt)
or
x(t)=Acos(ωt+ϕ)
Comments