(i) The average speedis total distance over total time:
v A D = d t = A B + B C + C D t A B + t B C + t C D = = 40 + 80 + 60 5 + 4 + 3 = 15 m/s . v_{AD}=\frac{d}{t}=\frac{AB+BC+CD}{t_{AB}+t_{BC}+t_{CD}}=\\
\space\\
=\frac{40+80+60}{5+4+3}=15\text{ m/s}. v A D = t d = t A B + t BC + t C D A B + BC + C D = = 5 + 4 + 3 40 + 80 + 60 = 15 m/s .
(ii) We have three displacement vectors: 40 m @ -30°, 80 m @ 0° and 60 @ 50°. Their vector sum will be
r ⃗ = r x i + r y j = = [ 40 cos ( − 30 ) ∘ + 80 cos 0 + 60 cos 5 0 ∘ ] i + + [ 40 sin ( − 30 ) ∘ + 80 sin 0 + 60 sin 5 0 ∘ ] j = = 153 i + 26 j . \vec{r}=r_x\textbf{i}+r_y\textbf{j}=\\
=[40\text{ cos}(-30)^\circ+80\text{ cos}0+60\text{ cos}50^\circ]\textbf{i}+\\
+[40\text{ sin}(-30)^\circ+80\text{ sin}0+60\text{ sin}50^\circ]\textbf{j}=\\
=153\textbf{i}+26\textbf{j}. r = r x i + r y j = = [ 40 cos ( − 30 ) ∘ + 80 cos 0 + 60 cos 5 0 ∘ ] i + + [ 40 sin ( − 30 ) ∘ + 80 sin 0 + 60 sin 5 0 ∘ ] j = = 153 i + 26 j .
(iii) The average velocity in unit vector form from A to D:
v ⃗ = v x i + v y j = r x t A D i + r y t A D j = 12.8 i + 2.16 j . \vec{v}=v_x\textbf{i}+v_y\textbf{j}=\frac{r_x}{t_{AD}}\textbf{i}+\frac{r_y}{t_{AD}}\textbf{j}
=12.8\textbf{i}+2.16\textbf{j}. v = v x i + v y j = t A D r x i + t A D r y j = 12.8 i + 2.16 j .
(iv) Since we have our vector v ⃗ \vec{v} v , the magnitude is
v = v x 2 + v y 2 = 12.9 m/s . v=\sqrt{v_x^2+v_y^2}=12.9\text{ m/s}. v = v x 2 + v y 2 = 12.9 m/s . The angle will be
θ = atan v y v x = 9.5 8 ∘ . \theta=\text{atan}\frac{v_y}{v_x}=9.58^\circ. θ = atan v x v y = 9.5 8 ∘ .
Comments