Question #104508
[img]https://upload.cc/i1/2020/03/03/VmZEs6.jpg[/img]
1
Expert's answer
2020-03-05T09:37:02-0500


(i)


According to the second Newton's low


T+magsin40°=maa-T+m_a\cdot g\cdot \sin40°=m_a\cdot a


Tμs(mbg+T0sin30°)T0cos30°=mbaT-\mu_s\cdot (m_b\cdot g+T_0\cdot \sin30°)-T_0\cdot \cos30°=m_b\cdot a


T0cos30°μs(mcgT0sin30°)=mcaT_0\cdot \cos30°-\mu_s\cdot (m_c\cdot g-T_0\cdot \sin30°)=m_c\cdot a



Add these equations


a(ma+mb+mc)=magsin40°(mb+mc)gμsa(m_a+m_b+m_c)=m_a\cdot g\cdot \sin 40°-(m_b+m_c)\cdot g\mu_s ;


magsin40°(mb+mc)gμs=m_a\cdot g\cdot \sin 40°-(m_b+m_c)\cdot g\mu_s=


=129.8sin40°(10+5)9.80.4=16.8N=12\cdot 9.8\cdot \sin 40°-(10+5)\cdot 9.8\cdot 0.4=16.8 N


The block will move.


(ii)


a=magsin40°(mb+mc)gμkma+mb+mc=a=\frac{m_a\cdot g\cdot \sin 40°-(m_b+m_c)\cdot g\mu_k}{m_a+m_b+m_c}=


=129.8sin40°(10+5)9.80.312+10+5=1.17m/s2=\frac{12\cdot 9.8\cdot \sin 40°-(10+5)\cdot 9.8\cdot 0.3}{12+10+5}=1.17 m/s^2


(iii)


T=magsin40°maa=129.8sin40°121.1761.6NT=m_a\cdot g\cdot \sin40°-m_a\cdot a=12\cdot 9.8\cdot \sin40°-12\cdot 1.17\approx61.6N


T0=mca+μkmcgcos30°+μksin30°=51.17+0.359.8cos30°+0.3sin30°20.2NT_0=\frac{m_ca+\mu_km_cg}{\cos30°+\mu_k\sin30°}=\frac{5\cdot 1.17+0.3\cdot 5\cdot 9.8}{\cos30°+0.3\cdot \sin30°}\approx20.2N








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS