(i)
According to the second Newton's low
"-T+m_a\\cdot g\\cdot \\sin40\u00b0=m_a\\cdot a"
"T-\\mu_s\\cdot (m_b\\cdot g+T_0\\cdot \\sin30\u00b0)-T_0\\cdot \\cos30\u00b0=m_b\\cdot a"
"T_0\\cdot \\cos30\u00b0-\\mu_s\\cdot (m_c\\cdot g-T_0\\cdot \\sin30\u00b0)=m_c\\cdot a"
Add these equations
"a(m_a+m_b+m_c)=m_a\\cdot g\\cdot \\sin 40\u00b0-(m_b+m_c)\\cdot g\\mu_s" ;
"m_a\\cdot g\\cdot \\sin 40\u00b0-(m_b+m_c)\\cdot g\\mu_s="
"=12\\cdot 9.8\\cdot \\sin 40\u00b0-(10+5)\\cdot 9.8\\cdot 0.4=16.8 N"
The block will move.
(ii)
"a=\\frac{m_a\\cdot g\\cdot \\sin 40\u00b0-(m_b+m_c)\\cdot g\\mu_k}{m_a+m_b+m_c}="
"=\\frac{12\\cdot 9.8\\cdot \\sin 40\u00b0-(10+5)\\cdot 9.8\\cdot 0.3}{12+10+5}=1.17 m\/s^2"
(iii)
"T=m_a\\cdot g\\cdot \\sin40\u00b0-m_a\\cdot a=12\\cdot 9.8\\cdot \\sin40\u00b0-12\\cdot 1.17\\approx61.6N"
"T_0=\\frac{m_ca+\\mu_km_cg}{\\cos30\u00b0+\\mu_k\\sin30\u00b0}=\\frac{5\\cdot 1.17+0.3\\cdot 5\\cdot 9.8}{\\cos30\u00b0+0.3\\cdot \\sin30\u00b0}\\approx20.2N"
Comments
Leave a comment