The Maxwell's equations in free space
∇×E=−c1∂t∂B∇×B=c1∂t∂EdivE=0divB=0
From the second equation we obtain
∇×∂t∂B=c1∂t2∂2EPlug first equation into last, we get
−c∇×(∇×E)=c1∂t2∂2ESince
∇×(∇×E)=grad(divE)−∇2E=−∇2Ewe finally obtain
∇2E−c21∂t2∂2E=0For the z-component of the electric field vector the wave equation
∇2Ez−c21∂t2∂2Ez=0
Comments