The Maxwell's equations in free space
"\\nabla\\times {\\bf E}=-\\frac{1}{c}\\frac{\\partial {\\bf B}}{\\partial t}""\\nabla\\times {\\bf B}=\\frac{1}{c}\\frac{\\partial {\\bf E}}{\\partial t}""\\rm div{\\bf E}=0""\\rm div{\\bf B}=0"
From the second equation we obtain
"\\nabla\\times \\frac{\\partial {\\bf B}}{\\partial t}=\\frac{1}{c}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}"Plug first equation into last, we get
"-c\\nabla\\times (\\nabla\\times {\\bf E})=\\frac{1}{c}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}"Since
"\\nabla\\times (\\nabla\\times {\\bf E})={\\rm grad(div {\\bf E})}-\\nabla^2 {\\bf E} =-\\nabla^2 {\\bf E}"we finally obtain
"\\nabla^2 {\\bf E}-\\frac{1}{c^2}\\frac{\\partial^2 {\\bf E}}{\\partial t^2}=0"For the z-component of the electric field vector the wave equation
"\\nabla^2 {E_z}-\\frac{1}{c^2}\\frac{\\partial^2 {E_z}}{\\partial t^2}=0"
Comments
Leave a comment