1) The incident wave is written in the form of
"\\textbf{B}_i =10^{\u2212 3}\\text{sin} (\u03c9t \u2212\u03b2y) \\hat\\textbf{k}\\space\\text{ T}." It means that the electric field has magnitude
"E=\\frac{B}{\\sqrt{\\mu_0\\epsilon_0}}=300\\cdot10^3\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\nH=\\frac{B}{\\mu_0}=\\frac{2500}{\\pi}\\space\\frac{\\text{A}}{\\text{m}}.""\\beta=2\\pi f\\sqrt{\\mu_0\\epsilon_0}=\\frac{2\\pi f}{c}=\\frac{\\pi}{15000}\\text{ m}^{-1},\\\\\n\\space\\\\\n\\omega=2\\pi f=2\\pi\\cdot10^4\\text{ s}^{-1}."Hence the electric field vector is
"\\textbf{E}_i\n=300\\cdot10^3\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t-\\frac{\\pi}{15000}y\\Big)(-\\hat\\textbf{i})\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\n\\textbf{H}_i=\\frac{2500}{\\pi}\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t-\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{k}\\space\\frac{\\text{V}}{\\text{m}}."
2) Prior to calculate the reflection coefficient for the reflected wave, calculate the wave impedances:
"\\eta_0=\\sqrt{\\frac{\\mu_0}{\\epsilon_0}}=376.73\\space\\Omega,\\\\\n\\eta_2=\\sqrt{\\frac{4\\mu_0}{9\\epsilon_0}}=251.15\\space\\Omega,\\\\\n\\space\\\\\nr=\\frac{\\eta_2-\\eta_1}{\\eta_2+\\eta_1}=-0.2."
The magnitudes of E- and H-components will be
"E_r=rE,\\\\\nH_r=rH."Keep in mind that since the wave is reflected, the wave number beta here has the same magnitude but opposite sign. This gives us:
"\\textbf{E}_r=-60\\cdot10^3\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{i}\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\n\\textbf{H}_r=\\frac{500}{\\pi}\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{k}\\space\\frac{\\text{A}}{\\text{m}}."
3) To obtain equations for the transmitted wave, calculate the transmission coefficient:
"t=\\frac{2\\eta_2}{\\eta_1+\\eta_2}=1+r=0.8." The magnitudes are:
"E_t=tE,\\\\\nH_t=tH." The equations, thus, are:
"\\textbf{E}_t=240\\cdot10^3\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t-\\frac{\\pi}{2500}y\\Big)(-\\hat\\textbf{i})\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\n\\textbf{H}_t=\\frac{2000}{\\pi}\\cdot\\text{sin}\\Big(20\\pi\\cdot10^3 t-\\frac{\\pi}{2500}y\\Big)\\hat\\textbf{k}\\space\\frac{\\text{A}}{\\text{m}}."
Comments
Leave a comment