1) The incident wave is written in the form of
\textbf{B}_i =10^{− 3}\text{sin} (ωt −βy) \hat\textbf{k}\space\text{ T}. It means that the electric field has magnitude
E = B μ 0 ϵ 0 = 300 ⋅ 1 0 3 V m , H = B μ 0 = 2500 π A m . E=\frac{B}{\sqrt{\mu_0\epsilon_0}}=300\cdot10^3\space\frac{\text{V}}{\text{m}},\\
\space\\
H=\frac{B}{\mu_0}=\frac{2500}{\pi}\space\frac{\text{A}}{\text{m}}. E = μ 0 ϵ 0 B = 300 ⋅ 1 0 3 m V , H = μ 0 B = π 2500 m A . β = 2 π f μ 0 ϵ 0 = 2 π f c = π 15000 m − 1 , ω = 2 π f = 2 π ⋅ 1 0 4 s − 1 . \beta=2\pi f\sqrt{\mu_0\epsilon_0}=\frac{2\pi f}{c}=\frac{\pi}{15000}\text{ m}^{-1},\\
\space\\
\omega=2\pi f=2\pi\cdot10^4\text{ s}^{-1}. β = 2 π f μ 0 ϵ 0 = c 2 π f = 15000 π m − 1 , ω = 2 π f = 2 π ⋅ 1 0 4 s − 1 . Hence the electric field vector is
\textbf{E}_i
=300\cdot10^3\cdot\text{sin}\Big(20\pi\cdot10^3 t-\frac{\pi}{15000}y\Big)(-\hat\textbf{i})\space\frac{\text{V}}{\text{m}},\\
\space\\
\textbf{H}_i=\frac{2500}{\pi}\cdot\text{sin}\Big(20\pi\cdot10^3 t-\frac{\pi}{15000}y\Big)\hat\textbf{k}\space\frac{\text{V}}{\text{m}}.
2) Prior to calculate the reflection coefficient for the reflected wave, calculate the wave impedances:
η 0 = μ 0 ϵ 0 = 376.73 Ω , η 2 = 4 μ 0 9 ϵ 0 = 251.15 Ω , r = η 2 − η 1 η 2 + η 1 = − 0.2. \eta_0=\sqrt{\frac{\mu_0}{\epsilon_0}}=376.73\space\Omega,\\
\eta_2=\sqrt{\frac{4\mu_0}{9\epsilon_0}}=251.15\space\Omega,\\
\space\\
r=\frac{\eta_2-\eta_1}{\eta_2+\eta_1}=-0.2. η 0 = ϵ 0 μ 0 = 376.73 Ω , η 2 = 9 ϵ 0 4 μ 0 = 251.15 Ω , r = η 2 + η 1 η 2 − η 1 = − 0.2.
The magnitudes of E- and H-components will be
E r = r E , H r = r H . E_r=rE,\\
H_r=rH. E r = r E , H r = rH . Keep in mind that since the wave is reflected, the wave number beta here has the same magnitude but opposite sign. This gives us:
\textbf{E}_r=-60\cdot10^3\cdot\text{sin}\Big(20\pi\cdot10^3 t+\frac{\pi}{15000}y\Big)\hat\textbf{i}\space\frac{\text{V}}{\text{m}},\\
\space\\
\textbf{H}_r=\frac{500}{\pi}\cdot\text{sin}\Big(20\pi\cdot10^3 t+\frac{\pi}{15000}y\Big)\hat\textbf{k}\space\frac{\text{A}}{\text{m}}.
3) To obtain equations for the transmitted wave, calculate the transmission coefficient:
t = 2 η 2 η 1 + η 2 = 1 + r = 0.8. t=\frac{2\eta_2}{\eta_1+\eta_2}=1+r=0.8. t = η 1 + η 2 2 η 2 = 1 + r = 0.8. The magnitudes are:
E t = t E , H t = t H . E_t=tE,\\
H_t=tH. E t = tE , H t = t H . The equations, thus, are:
\textbf{E}_t=240\cdot10^3\cdot\text{sin}\Big(20\pi\cdot10^3 t-\frac{\pi}{2500}y\Big)(-\hat\textbf{i})\space\frac{\text{V}}{\text{m}},\\
\space\\
\textbf{H}_t=\frac{2000}{\pi}\cdot\text{sin}\Big(20\pi\cdot10^3 t-\frac{\pi}{2500}y\Big)\hat\textbf{k}\space\frac{\text{A}}{\text{m}}.
Comments