For incident wave:
"\\textbf{E}_i=E_oe^{-j\\beta_1 z}\\hat\\textbf{x},\\\\\n\\textbf{H}_i=\\frac{E_o}{\\eta_1}e^{-j\\beta_1 z}\\hat\\textbf{y}."Magnitude of the electric field:
"E_0=\\frac{B_0}{\\sqrt{\\mu_0\\epsilon_0}}=3\\cdot10^5\\text{ V\/m}."The vector equations:
"\\textbf{E}_i=3\\cdot10^5\\cdot\\text{sin}\\Big(2\\pi f t-\\frac{2\\pi f}{c}y\\Big)(-\\hat\\textbf{x})=\\\\\n=3\\cdot10^5\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{15000}y\\Big)(-\\hat\\textbf{x})\\text{ V\/m}.\\\\\n\\textbf{H}_i=\\textbf{B}_i\/\\mu_0=\\frac{2500}{\\pi}\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{z}\\text{ A\/m}."
Below we will use the following parameters:
"\\eta_1=\\sqrt{\\frac{\\mu_0}{\\epsilon_0}}=120\\pi\\space\\Omega,\\\\\n\\eta_2=\\sqrt{\\frac{4\\mu_0}{9\\epsilon_0}}=80\\pi\\space\\Omega;\\\\\n\n\\Gamma=\\frac{\\eta_2-\\eta_1}{\\eta_2+\\eta_1}=-0.2,\\\\\n\\tau=1+\\Gamma=0.8."
Reflected wave with reflection coefficient "\\Gamma":
"\\textbf{E}_r=\\Gamma E_oe^{+j\\beta_1 z}\\hat\\textbf{x},\\\\\n\\textbf{H}_r=-\\Gamma \\frac{E_o}{\\eta_1}e^{+j\\beta_1 z}\\hat\\textbf{y}."
For reflected wave, since it propagates in the same medium, "\\beta_\\text{reflected}=-\\beta_1." :
"\\textbf{E}_r=-6\\cdot10^4\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{x}\\text{ V\/m}."
"\\textbf{H}_r=\\frac{500}{\\pi}\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{z}\\text{ A\/m}."
For transmitted wave with transmission coefficient "\\tau":
"\\textbf{E}_\\tau=\\tau E_oe^{-\\beta_2 z}\\hat\\textbf{x},\\\\\n\\textbf{H}_\\tau=\\tau\\frac{E_o}{\\eta_2}e^{-j\\beta_2 z}\\hat\\textbf{y}.""\\beta_2=2\\pi f\\sqrt{\\mu_2\\cdot\\epsilon_2}=\\frac{\\pi}{2500}."
"\\textbf{E}_\\tau=24\\cdot10^4\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{2500}y\\Big)(-\\hat\\textbf{x})\\text{ V\/m}."
"\\textbf{H}_\\tau=\\frac{2000}{\\pi}\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{2500}y\\Big)\\hat\\textbf{z}\\text{ A\/m}."
Comments
Leave a comment