For incident wave :
\textbf{E}_i=E_oe^{-j\beta_1 z}\hat\textbf{x},\\
\textbf{H}_i=\frac{E_o}{\eta_1}e^{-j\beta_1 z}\hat\textbf{y}. Magnitude of the electric field:
E 0 = B 0 μ 0 ϵ 0 = 3 ⋅ 1 0 5 V/m . E_0=\frac{B_0}{\sqrt{\mu_0\epsilon_0}}=3\cdot10^5\text{ V/m}. E 0 = μ 0 ϵ 0 B 0 = 3 ⋅ 1 0 5 V/m . The vector equations:
\textbf{E}_i=3\cdot10^5\cdot\text{sin}\Big(2\pi f t-\frac{2\pi f}{c}y\Big)(-\hat\textbf{x})=\\
=3\cdot10^5\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)(-\hat\textbf{x})\text{ V/m}.\\
\textbf{H}_i=\textbf{B}_i/\mu_0=\frac{2500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)\hat\textbf{z}\text{ A/m}.
Below we will use the following parameters:
η 1 = μ 0 ϵ 0 = 120 π Ω , η 2 = 4 μ 0 9 ϵ 0 = 80 π Ω ; Γ = η 2 − η 1 η 2 + η 1 = − 0.2 , τ = 1 + Γ = 0.8. \eta_1=\sqrt{\frac{\mu_0}{\epsilon_0}}=120\pi\space\Omega,\\
\eta_2=\sqrt{\frac{4\mu_0}{9\epsilon_0}}=80\pi\space\Omega;\\
\Gamma=\frac{\eta_2-\eta_1}{\eta_2+\eta_1}=-0.2,\\
\tau=1+\Gamma=0.8. η 1 = ϵ 0 μ 0 = 120 π Ω , η 2 = 9 ϵ 0 4 μ 0 = 80 π Ω ; Γ = η 2 + η 1 η 2 − η 1 = − 0.2 , τ = 1 + Γ = 0.8.
Reflected wave with reflection coefficient Γ \Gamma Γ :
\textbf{E}_r=\Gamma E_oe^{+j\beta_1 z}\hat\textbf{x},\\
\textbf{H}_r=-\Gamma \frac{E_o}{\eta_1}e^{+j\beta_1 z}\hat\textbf{y}.
For reflected wave, since it propagates in the same medium, β reflected = − β 1 . \beta_\text{reflected}=-\beta_1. β reflected = − β 1 . :
\textbf{E}_r=-6\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{x}\text{ V/m}.
\textbf{H}_r=\frac{500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{z}\text{ A/m}.
For transmitted wave with transmission coefficient τ \tau τ :
\textbf{E}_\tau=\tau E_oe^{-\beta_2 z}\hat\textbf{x},\\
\textbf{H}_\tau=\tau\frac{E_o}{\eta_2}e^{-j\beta_2 z}\hat\textbf{y}. β 2 = 2 π f μ 2 ⋅ ϵ 2 = π 2500 . \beta_2=2\pi f\sqrt{\mu_2\cdot\epsilon_2}=\frac{\pi}{2500}. β 2 = 2 π f μ 2 ⋅ ϵ 2 = 2500 π .
\textbf{E}_\tau=24\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)(-\hat\textbf{x})\text{ V/m}.
\textbf{H}_\tau=\frac{2000}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)\hat\textbf{z}\text{ A/m}.
Comments