Question #93452
A uniform plane wave of 10 kHz travelling in free space strikes a large block of a
material having ε = 9ε0, μ = 4μ0 and σ = 0 normal to the surface. If the incident
magnetic field vector is given by
B =10− ^3sin (ωt −βy) kˆ
tesla
Write the complete expressions for the incident, reflected, and transmitted field vectors.
1
Expert's answer
2019-09-02T09:12:50-0400


For incident wave:


\textbf{E}_i=E_oe^{-j\beta_1 z}\hat\textbf{x},\\ \textbf{H}_i=\frac{E_o}{\eta_1}e^{-j\beta_1 z}\hat\textbf{y}.

Magnitude of the electric field:


E0=B0μ0ϵ0=3105 V/m.E_0=\frac{B_0}{\sqrt{\mu_0\epsilon_0}}=3\cdot10^5\text{ V/m}.

The vector equations:


\textbf{E}_i=3\cdot10^5\cdot\text{sin}\Big(2\pi f t-\frac{2\pi f}{c}y\Big)(-\hat\textbf{x})=\\ =3\cdot10^5\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)(-\hat\textbf{x})\text{ V/m}.\\ \textbf{H}_i=\textbf{B}_i/\mu_0=\frac{2500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)\hat\textbf{z}\text{ A/m}.

Below we will use the following parameters:


η1=μ0ϵ0=120π Ω,η2=4μ09ϵ0=80π Ω;Γ=η2η1η2+η1=0.2,τ=1+Γ=0.8.\eta_1=\sqrt{\frac{\mu_0}{\epsilon_0}}=120\pi\space\Omega,\\ \eta_2=\sqrt{\frac{4\mu_0}{9\epsilon_0}}=80\pi\space\Omega;\\ \Gamma=\frac{\eta_2-\eta_1}{\eta_2+\eta_1}=-0.2,\\ \tau=1+\Gamma=0.8.

Reflected wave with reflection coefficient Γ\Gamma:


\textbf{E}_r=\Gamma E_oe^{+j\beta_1 z}\hat\textbf{x},\\ \textbf{H}_r=-\Gamma \frac{E_o}{\eta_1}e^{+j\beta_1 z}\hat\textbf{y}.


For reflected wave, since it propagates in the same medium, βreflected=β1.\beta_\text{reflected}=-\beta_1. :


\textbf{E}_r=-6\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{x}\text{ V/m}.

\textbf{H}_r=\frac{500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{z}\text{ A/m}.

For transmitted wave with transmission coefficient τ\tau:


\textbf{E}_\tau=\tau E_oe^{-\beta_2 z}\hat\textbf{x},\\ \textbf{H}_\tau=\tau\frac{E_o}{\eta_2}e^{-j\beta_2 z}\hat\textbf{y}.β2=2πfμ2ϵ2=π2500.\beta_2=2\pi f\sqrt{\mu_2\cdot\epsilon_2}=\frac{\pi}{2500}.

\textbf{E}_\tau=24\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)(-\hat\textbf{x})\text{ V/m}.

\textbf{H}_\tau=\frac{2000}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)\hat\textbf{z}\text{ A/m}.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS