Question #93518
Using Maxwell’s equations in free space, derive the wave equation for the z-component of
the electric field vector.
1
Expert's answer
2019-09-02T09:20:28-0400

The Maxwell's equations in free space have the following form (Gauss units are used):


E=ρ,H=0,×E=1cHt,×H=1cEt+4πcj.\nabla \cdot \vec{E} = \rho,\\ \nabla \cdot \vec{H} = 0, \\ \nabla \times \vec{E} = - \frac{1}{c} \frac{\partial \vec{H}}{\partial t},\\ \nabla \times \vec{H} = \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j}.

Calculating the curl from the left side of the third equation above, one can derive:


×(×E)=(E)ΔE=ρΔE.\nabla \times (\nabla \times \vec{E}) = \nabla(\nabla \cdot \vec{E}) - \Delta \vec{E} = \nabla \rho - \Delta \vec{E}.

Taking into account that operators \nabla and t\frac{\partial}{\partial t} commute, one can derive the corresponding expression after taking the curl from the right side of the same equation:


×(1cHt)=1ct(1cEt+4πcj)=1c22Et24πc2jt\nabla \times \left( - \frac{1}{c} \frac{\partial \vec{H}}{\partial t} \right) = - \frac{1}{c} \frac{\partial}{\partial t} \left( \frac{1}{c} \frac{\partial \vec{E}}{\partial t} + \frac{4 \pi}{c} \vec{j} \right) = - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} - \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t}

Combining the expressions together, we obtain:


ΔE1c22Et2=ρ+4πc2jt.\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = \nabla \rho + \frac{4 \pi}{c^2} \frac{\partial \vec{j}}{\partial t}.

Finally, projecting this equation on the z-axis, one can derive:


ΔEz1c22Ezt2=ρz+4πc2jzt.\Delta E_z - \frac{1}{c^2} \frac{\partial^2 E_z}{\partial t^2} = \frac{\partial \rho}{\partial z} + \frac{4 \pi}{c^2} \frac{\partial j_z}{\partial t}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS