The Maxwell's equations in free space have the following form (Gauss units are used):
"\\nabla \\cdot \\vec{E} = \\rho,\\\\\n \t\\nabla \\cdot \\vec{H} = 0, \\\\\n \t\\nabla \\times \\vec{E} = - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t},\\\\\n \t\\nabla \\times \\vec{H} = \\frac{1}{c} \\frac{\\partial \\vec{E}}{\\partial t}\t+ \\frac{4 \\pi}{c} \\vec{j}."Calculating the curl from the left side of the third equation above, one can derive:
"\\nabla \\times (\\nabla \\times \\vec{E}) = \\nabla(\\nabla \\cdot \\vec{E}) - \\Delta \\vec{E} = \\nabla \\rho - \\Delta \\vec{E}."Taking into account that operators "\\nabla" and "\\frac{\\partial}{\\partial t}" commute, one can derive the corresponding expression after taking the curl from the right side of the same equation:
"\\nabla \\times \\left( - \\frac{1}{c} \\frac{\\partial \\vec{H}}{\\partial t} \\right) = - \\frac{1}{c} \\frac{\\partial}{\\partial t} \\left( \\frac{1}{c} \\frac{\\partial \\vec{E}}{\\partial t}\t\n \t+ \\frac{4 \\pi}{c} \\vec{j} \\right) = - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} - \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}" Combining the expressions together, we obtain:
"\\Delta \\vec{E} - \\frac{1}{c^2} \\frac{\\partial^2 \\vec{E}}{\\partial t^2} = \\nabla \\rho + \\frac{4 \\pi}{c^2} \\frac{\\partial \\vec{j}}{\\partial t}." Finally, projecting this equation on the z-axis, one can derive:
"\\Delta E_z - \\frac{1}{c^2} \\frac{\\partial^2 E_z}{\\partial t^2} = \\frac{\\partial \\rho}{\\partial z} + \\frac{4 \\pi}{c^2} \\frac{\\partial j_z}{\\partial t}."
Comments
Leave a comment