(a) The electric flux
The Gauss’s law states
So, the electric flux
"\\phi=\\frac{0.25\\times 10^{-9}}{8.85\\times 10^{-12}}\\times \\frac{4}{3}\\pi (0.75)^3=50\\:\\rm{V\\cdot m}"
(b) If "r>R" the electric field from both dielectric and conductive sphere
"\\oiint {\\bf E}\\cdot d{\\bf A}=\\frac{1}{\\varepsilon_0}\\iiint \\rho\\: dV"
"E\\times 4\\pi r^2=\\frac{\\rho}{\\varepsilon_0}\\times \\frac{4}{3}\\pi R^3"
"E=\\frac{\\rho R^3}{3\\varepsilon_0 r^2}=\\frac{0.25\\times 10^{-9}\\times (0.75)^3}{3\\times 8.85\\times 10^{-12}\\times (1.5)^2}=1.77\\:\\rm{V\/m}"
If "r<R" the electric field from dielectric sphere
"E=\\frac{\\rho r}{3\\varepsilon_0}=\\frac{0.25\\times 10^{-9}\\times 0.50}{3\\times 8.85\\times 10^{-12}}=4.71\\:\\rm{V\/m}"
If "r<R" the electric field inside a conductive sphere is zero. This is because all charge is at the surface of sphere.
Comments
Leave a comment