Question #93517
The volume charge density of a solid sphere of radius 0.75 m is 0.25 nCm^−3. Apply Gauss’s law to calculate the a) electric flux through the sphere and b) electric field at a distance of 1.5 m and at a distance of 0.50 m from the centre of the sphere, respectively. If this sphere were made of conducting material, what would the values of the electric fields be at these distances?
1
Expert's answer
2019-08-30T09:25:07-0400

(a) The electric flux


ϕ=EdA\phi=\oiint \bf{E}\cdot d\bf{A}

The Gauss’s law states


EdA=divEdV=1ε0ρdV\oiint {\bf E}\cdot d{\bf A}=\iiint {\rm div} {\bf E}\: dV=\frac{1}{\varepsilon_0}\iiint \rho\: dV

So, the electric flux


ϕ=1ε0ρdV=ρε0×43πR3\phi=\frac{1}{\varepsilon_0}\iiint \rho\: dV=\frac{\rho}{\varepsilon_0}\times \frac{4}{3}\pi R^3

ϕ=0.25×1098.85×1012×43π(0.75)3=50Vm\phi=\frac{0.25\times 10^{-9}}{8.85\times 10^{-12}}\times \frac{4}{3}\pi (0.75)^3=50\:\rm{V\cdot m}

(b) If r>Rr>R the electric field from both dielectric and conductive sphere

EdA=1ε0ρdV\oiint {\bf E}\cdot d{\bf A}=\frac{1}{\varepsilon_0}\iiint \rho\: dV

E×4πr2=ρε0×43πR3E\times 4\pi r^2=\frac{\rho}{\varepsilon_0}\times \frac{4}{3}\pi R^3

E=ρR33ε0r2=0.25×109×(0.75)33×8.85×1012×(1.5)2=1.77V/mE=\frac{\rho R^3}{3\varepsilon_0 r^2}=\frac{0.25\times 10^{-9}\times (0.75)^3}{3\times 8.85\times 10^{-12}\times (1.5)^2}=1.77\:\rm{V/m}

If r<Rr<R the electric field from dielectric sphere


E×4πr2=ρε0×43πr3E\times 4\pi r^2=\frac{\rho}{\varepsilon_0}\times \frac{4}{3}\pi r^3

E=ρr3ε0=0.25×109×0.503×8.85×1012=4.71V/mE=\frac{\rho r}{3\varepsilon_0}=\frac{0.25\times 10^{-9}\times 0.50}{3\times 8.85\times 10^{-12}}=4.71\:\rm{V/m}

If r<Rr<R the electric field inside a conductive sphere is zero. This is because all charge is at the surface of sphere.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS