Question #93560
A uniform plane wave of 10 kHz travelling in free space strikes a large block of a
material having ε = 9ε0, μ = 4μ0 and σ = 0 normal to the surface. If the incident
magnetic field vector is given by
B =10^− 3sin (ωt −βy) kˆ
tesla
Write the complete expressions for the incident, reflected, and transmitted field vectors.
1
Expert's answer
2019-09-02T09:20:46-0400

We have frequency f=10103 Hz.f=10\cdot10^3\text{ Hz}. First, calculate required parameters for each medium (medium of free space has index 0, medium within the block of some material has index 2). Reflected wave has index rr, index tt is for transmitted wave.


β0=2πfμ0ϵ0=2πfc=π15000 m1,βr=β0,βt=2πfμ2ϵ2=π2500 m1,η0=μ0ϵ0=120π Ω,η2=4μ09ϵ0=80π Ω,r=η2η0η2+η0=0.2,t=1+r=0.8.\beta_0=2\pi f\sqrt{\mu_0\epsilon_0}=\frac{2\pi f}{c}=\frac{\pi}{15000}\text{ m}^{-1},\\ \beta_{r}=-\beta_0,\\ \beta_t=2\pi f\sqrt{\mu_2\epsilon_2}=\frac{\pi}{2500}\text{ m}^{-1},\\ \eta_0=\sqrt{\frac{\mu_0}{\epsilon_0}}=120\pi\space\Omega,\\ \eta_2=\sqrt{\frac{4\mu_0}{9\epsilon_0}}=80\pi\space\Omega,\\ r=\frac{\eta_2-\eta_0}{\eta_2+\eta_0}=-0.2,\\ t=1+r=0.8.


Magnitudes of the incident E-field and H-field:


E0=B0μ0ϵ0=3105 V/m.E_0=\frac{B_0}{\sqrt{\mu_0\epsilon_0}}=3\cdot10^5\text{ V/m}.

The equations for incident wave:


\textbf{E}_i=E_oe^{-j\beta_0 z}\hat\textbf{x},\\ \space\\ \textbf{H}_i=\frac{E_o}{\eta_0}e^{-j\beta_0 z}\hat\textbf{y}.


\textbf{E}_i =3\cdot10^5\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)(-\hat\textbf{x})\space\frac{\text{V}}{\text{m}},\\ \space\\ \textbf{H}_i=\frac{\textbf{B}_i}{\mu_0}=\frac{2500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{15000}y\Big)\hat\textbf{z}\space\frac{\text{V}}{\text{m}}.

The equations for reflected wave with reflection coefficient rr:

\textbf{E}_r=rE_oe^{-j\beta_r z}\hat\textbf{x},\\ \space\\ \textbf{H}_r=-r \frac{E_o}{\eta_0}e^{-j\beta_r z}\hat\textbf{y}.

\textbf{E}_r=-6\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{x}\space\frac{\text{V}}{\text{m}},\\ \space\\ \textbf{H}_r=\frac{500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{z}\space\frac{\text{A}}{\text{m}}.

The equations of transmitted wave with transmission coefficient tt:

\textbf{E}_t=t E_oe^{-\beta_2 z}\hat\textbf{x},\\ \space\\ \textbf{H}_t=t\frac{E_o}{\eta_2}e^{-j\beta_2 z}\hat\textbf{y}.

\textbf{E}_t=24\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)(-\hat\textbf{x})\space\frac{\text{V}}{\text{m}},\\ \space\\ \textbf{H}_\tau=\frac{2000}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)\hat\textbf{z}\space\frac{\text{A}}{\text{m}}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS