We have frequency "f=10\\cdot10^3\\text{ Hz}." First, calculate required parameters for each medium (medium of free space has index 0, medium within the block of some material has index 2). Reflected wave has index "r", index "t" is for transmitted wave.
Magnitudes of the incident E-field and H-field:
The equations for incident wave:
The equations for reflected wave with reflection coefficient "r":
"\\textbf{E}_r=rE_oe^{-j\\beta_r z}\\hat\\textbf{x},\\\\\n\\space\\\\\n\\textbf{H}_r=-r \\frac{E_o}{\\eta_0}e^{-j\\beta_r z}\\hat\\textbf{y}.""\\textbf{E}_r=-6\\cdot10^4\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{x}\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\n\\textbf{H}_r=\\frac{500}{\\pi}\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t+\\frac{\\pi}{15000}y\\Big)\\hat\\textbf{z}\\space\\frac{\\text{A}}{\\text{m}}."
The equations of transmitted wave with transmission coefficient "t":
"\\textbf{E}_t=t E_oe^{-\\beta_2 z}\\hat\\textbf{x},\\\\\n\\space\\\\\n\\textbf{H}_t=t\\frac{E_o}{\\eta_2}e^{-j\\beta_2 z}\\hat\\textbf{y}.""\\textbf{E}_t=24\\cdot10^4\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{2500}y\\Big)(-\\hat\\textbf{x})\\space\\frac{\\text{V}}{\\text{m}},\\\\\n\\space\\\\\n\\textbf{H}_\\tau=\\frac{2000}{\\pi}\\cdot\\text{sin}\\Big(2\\pi\\cdot10^4 t-\\frac{\\pi}{2500}y\\Big)\\hat\\textbf{z}\\space\\frac{\\text{A}}{\\text{m}}."
Comments
Leave a comment