We have frequency First, calculate required parameters for each medium (medium of free space has index 0, medium within the block of some material has index 2). Reflected wave has index , index is for transmitted wave.
Magnitudes of the incident E-field and H-field:
The equations for incident wave:
The equations for reflected wave with reflection coefficient :
\textbf{E}_r=rE_oe^{-j\beta_r z}\hat\textbf{x},\\ \space\\ \textbf{H}_r=-r \frac{E_o}{\eta_0}e^{-j\beta_r z}\hat\textbf{y}.\textbf{E}_r=-6\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{x}\space\frac{\text{V}}{\text{m}},\\ \space\\ \textbf{H}_r=\frac{500}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t+\frac{\pi}{15000}y\Big)\hat\textbf{z}\space\frac{\text{A}}{\text{m}}.
The equations of transmitted wave with transmission coefficient :
\textbf{E}_t=t E_oe^{-\beta_2 z}\hat\textbf{x},\\ \space\\ \textbf{H}_t=t\frac{E_o}{\eta_2}e^{-j\beta_2 z}\hat\textbf{y}.\textbf{E}_t=24\cdot10^4\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)(-\hat\textbf{x})\space\frac{\text{V}}{\text{m}},\\ \space\\ \textbf{H}_\tau=\frac{2000}{\pi}\cdot\text{sin}\Big(2\pi\cdot10^4 t-\frac{\pi}{2500}y\Big)\hat\textbf{z}\space\frac{\text{A}}{\text{m}}.
Comments