Let the potential be:
"V = 7r^2 \\sin\\theta\\cos \\varphi"
According to the Maxwell's equations, the charge density will be:
"\\bigtriangleup V = -\\dfrac{\\rho}{\\varepsilon_0}" where ρ is the charge density and ε0 is the dielectric constant.
The Laplace operator in the spherical coordinates will have the following view:
"\\Delta V = \\frac{1}{r^2} \\frac{\\partial}{\\partial r} \\left(r^2 \\frac{\\partial V}{\\partial r} \\right) + \\frac{1}{r^2 \\sin \\theta} \\frac{\\partial}{\\partial \\theta} \\left(\\sin \\theta \\frac{\\partial V}{\\partial \\theta} \\right) + \\frac{1}{r^2 \\sin^2 \\theta} \\frac{\\partial^2 V}{\\partial \\varphi^2}"The first term:
"\\frac{1}{r^2} \\frac{\\partial}{\\partial r} \\left(r^2 \\frac{\\partial V}{\\partial r} \\right) = \\frac{1}{r^2} \\frac{\\partial}{\\partial r} \\left(r^2 \\cdot14r\\sin\\theta\\cos \\varphi \\right) = \\\\\n=\\frac{1}{r^2}\\cdot42r^2\\sin\\theta\\cos \\varphi =42\\sin\\theta\\cos \\varphi"The second term:
"\\frac{1}{r^2 \\sin \\theta} \\frac{\\partial}{\\partial \\theta} \\left(\\sin \\theta \\frac{\\partial V}{\\partial \\theta} \\right) =\\frac{1}{r^2 \\sin \\theta} \\frac{\\partial}{\\partial \\theta} \\left(\\sin \\theta \\cdot 7r^2 \\cos\\theta\\cos \\varphi \\right) =\\\\\n=\\frac{7\\cos \\varphi}{2 \\sin \\theta} \\frac{\\partial}{\\partial \\theta} \\left(\\sin2\\theta \\right) = \n\\frac{7\\cos \\varphi\\cos\\theta}{\\sin \\theta} =7\\cos\\varphi\\tan\\theta"
The third term:
"\\frac{1}{r^2 \\sin^2 \\theta} \\frac{\\partial^2 V}{\\partial \\varphi^2} = \\frac{7r^2\\sin\\theta}{r^2 \\sin^2 \\theta} \\frac{\\partial^2 \\cos\\varphi}{\\partial \\varphi^2} =\\frac{7}{\\sin \\theta} \\frac{\\partial^2 \\cos\\varphi}{\\partial \\varphi^2} = -\\frac{7\\cos\\varphi}{\\sin \\theta}" Putting it all together:
"\\rho = 7\\varepsilon_0 \\left( \\frac{\\cos\\varphi}{\\sin \\theta}- 6\\sin\\theta\\cos \\varphi - \\cos\\varphi\\tan\\theta \\right)"Now to find the total charge, one should integrate this density over whole sphere:
"Q = \\iiint\\rho dV = \\iiint\\rho r^2 \\sin\\theta drd\\theta d\\varphi" The integration w.r. to r will give the multiplier "r_0^3\/3" , where r0 = 5 mm is the radius of the sphere, because the charge density does not depend on the radial coordinate.
Integrating the first term of density:
"\\iint\\frac{\\cos\\varphi}{\\sin \\theta} \\sin\\theta d\\theta d\\varphi = 4\\int^\\pi _0d\\theta\\int^{\\pi\/2}_0 \\cos\\varphi d\\varphi = \n4\\pi\\sin\\varphi|^{\\pi\/2}_0 = 4\\pi" Integrating the second term of density:
"-\\iint6\\sin^2\\theta\\cos \\varphi d\\theta d\\varphi =-6 \\cdot4\\int^\\pi _0 \\sin^2\\theta d\\theta \\int^{\\pi\/2}_0 \\cos\\varphi d\\varphi = -6\\cdot\\dfrac{\\pi}{2}\\cdot 4\\pi = -48\\pi^2" Integrating the third term of density:
"-\\iint \\tan\\theta\\cos \\varphi \\sin\\theta d\\theta d\\varphi =- \\int^\\pi _0 \\tan\\theta\\sin\\theta d\\theta \\int^{2\\pi}_0 \\cos\\varphi d\\varphi = 0" Finally:
"Q = 7\\varepsilon_0 \\dfrac{r_0^3}{3} \\left(4\\pi - 48\\pi^2 \\right) = 7\\cdot8.85\\cdot 10^{-12} \\dfrac{0.005^3}{3} \\left(4\\pi - 48\\pi^2 \\right) = -1.2\\cdot 10^{-15} C"
Answer. Q = -1.2*10^(-15) C
Comments
Leave a comment