Let the potential be:
V=7r2sinθcosφ According to the Maxwell's equations, the charge density will be:
△V=−ε0ρwhere ρ is the charge density and ε0 is the dielectric constant.
The Laplace operator in the spherical coordinates will have the following view:
ΔV=r21∂r∂(r2∂r∂V)+r2sinθ1∂θ∂(sinθ∂θ∂V)+r2sin2θ1∂φ2∂2V The first term:
r21∂r∂(r2∂r∂V)=r21∂r∂(r2⋅14rsinθcosφ)==r21⋅42r2sinθcosφ=42sinθcosφ The second term:
r2sinθ1∂θ∂(sinθ∂θ∂V)=r2sinθ1∂θ∂(sinθ⋅7r2cosθcosφ)==2sinθ7cosφ∂θ∂(sin2θ)=sinθ7cosφcosθ=7cosφtanθ The third term:
r2sin2θ1∂φ2∂2V=r2sin2θ7r2sinθ∂φ2∂2cosφ=sinθ7∂φ2∂2cosφ=−sinθ7cosφ Putting it all together:
ρ=7ε0(sinθcosφ−6sinθcosφ−cosφtanθ) How to find the total charge, one should integrate this density over whole sphere:
Q=∭ρdV=∭ρr2sinθdrdθdφ The integration w.r. to r will give the multiplier r03/3 , where r0=5mm is the radius of the sphere, because the charge density does not depend on the radial coordinate.
Integrating the first term of density:
∬sinθcosφsinθdθdφ=4∫0πdθ∫0π/2cosφdφ=4πsinφ∣0π/2=4π Integrating the second term of density:
−∬6sin2θcosφdθdφ=−6⋅4∫0πsin2θdθ∫0π/2cosφdφ=−6⋅2π⋅4π=−48π2 Integrating the third term of density:
−∬tanθcosφsinθdθdφ=−∫0πtanθsinθdθ∫02πcosφdφ=0 Finally:
Q=7ε03r03(4π−48π2)=7⋅8.85⋅10−1230.0053(4π−48π2)=−1.2⋅10−15C
Answer. Q = -1.2*10^(-15) C
Comments