Question #117753
Consider a sphere of radius 5 mm placed in free space containing a total amount of charge ‘Q’. The electric potential due to the distribution of the charge is V = 7 R2 Sin θ Cos ϕ. Find out the numeric value of the charge Q enclosed by the surface.
1
Expert's answer
2020-05-25T10:50:01-0400

Let the potential be:


V=7r2sinθcosφV = 7r^2 \sin\theta\cos \varphi

According to the Maxwell's equations, the charge density will be:


V=ρε0\bigtriangleup V = -\dfrac{\rho}{\varepsilon_0}

where ρ\rho is the charge density and ε0\varepsilon_0 is the dielectric constant.

The Laplace operator in the spherical coordinates will have the following view:


ΔV=1r2r(r2Vr)+1r2sinθθ(sinθVθ)+1r2sin2θ2Vφ2\Delta V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \varphi^2}

The first term:


1r2r(r2Vr)=1r2r(r214rsinθcosφ)==1r242r2sinθcosφ=42sinθcosφ\frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \cdot14r\sin\theta\cos \varphi \right) = \\ =\frac{1}{r^2}\cdot42r^2\sin\theta\cos \varphi =42\sin\theta\cos \varphi

The second term:


1r2sinθθ(sinθVθ)=1r2sinθθ(sinθ7r2cosθcosφ)==7cosφ2sinθθ(sin2θ)=7cosφcosθsinθ=7cosφtanθ\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) =\frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \cdot 7r^2 \cos\theta\cos \varphi \right) =\\ =\frac{7\cos \varphi}{2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin2\theta \right) = \frac{7\cos \varphi\cos\theta}{\sin \theta} =7\cos\varphi\tan\theta

The third term:


1r2sin2θ2Vφ2=7r2sinθr2sin2θ2cosφφ2=7sinθ2cosφφ2=7cosφsinθ\frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \varphi^2} = \frac{7r^2\sin\theta}{r^2 \sin^2 \theta} \frac{\partial^2 \cos\varphi}{\partial \varphi^2} =\frac{7}{\sin \theta} \frac{\partial^2 \cos\varphi}{\partial \varphi^2} = -\frac{7\cos\varphi}{\sin \theta}

Putting it all together:


ρ=7ε0(cosφsinθ6sinθcosφcosφtanθ)\rho = 7\varepsilon_0 \left( \frac{\cos\varphi}{\sin \theta}- 6\sin\theta\cos \varphi - \cos\varphi\tan\theta \right)

How to find the total charge, one should integrate this density over whole sphere:


Q=ρdV=ρr2sinθdrdθdφQ = \iiint\rho dV = \iiint\rho r^2 \sin\theta drd\theta d\varphi

The integration w.r. to rr will give the multiplier r03/3r_0^3/3 , where r0=5mmr_0 = 5 mm is the radius of the sphere, because the charge density does not depend on the radial coordinate.

Integrating the first term of density:


cosφsinθsinθdθdφ=40πdθ0π/2cosφdφ=4πsinφ0π/2=4π\iint\frac{\cos\varphi}{\sin \theta} \sin\theta d\theta d\varphi = 4\int^\pi _0d\theta\int^{\pi/2}_0 \cos\varphi d\varphi = 4\pi\sin\varphi|^{\pi/2}_0 = 4\pi

Integrating the second term of density:


6sin2θcosφdθdφ=640πsin2θdθ0π/2cosφdφ=6π24π=48π2-\iint6\sin^2\theta\cos \varphi d\theta d\varphi =-6 \cdot4\int^\pi _0 \sin^2\theta d\theta \int^{\pi/2}_0 \cos\varphi d\varphi = -6\cdot\dfrac{\pi}{2}\cdot 4\pi = -48\pi^2

Integrating the third term of density:


tanθcosφsinθdθdφ=0πtanθsinθdθ02πcosφdφ=0-\iint \tan\theta\cos \varphi \sin\theta d\theta d\varphi =- \int^\pi _0 \tan\theta\sin\theta d\theta \int^{2\pi}_0 \cos\varphi d\varphi = 0

Finally:


Q=7ε0r033(4π48π2)=78.8510120.00533(4π48π2)=1.21015CQ = 7\varepsilon_0 \dfrac{r_0^3}{3} \left(4\pi - 48\pi^2 \right) = 7\cdot8.85\cdot 10^{-12} \dfrac{0.005^3}{3} \left(4\pi - 48\pi^2 \right) = -1.2\cdot 10^{-15} C

Answer. Q = -1.2*10^(-15) C


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS