Electronic polarisability , αe\alpha_{e}αe
αe=ϵ0(ϵr−1)N\alpha_{e} = \frac {\epsilon_{0}(\epsilon_{r}-1)} {N}αe=Nϵ0(ϵr−1)
we know that,
Xe=ϵrϵ0−1X_{e} = \frac { \epsilon_{r}}{\epsilon_{0}}-1Xe=ϵ0ϵr−1
6=12ϵ0−16= \frac { 12}{\epsilon_{0}}-16=ϵ012−1
ϵ0=1.7142\epsilon_{0} = 1.7142ϵ0=1.7142
Answer : αe=ϵ0(ϵr−1)N\alpha_{e} = \frac {\epsilon_{0}(\epsilon_{r}-1)} {N}αe=Nϵ0(ϵr−1)
αe=1.7142(12−1)13.84×1028=1.3253×10−3F−m2\alpha_{e} = \frac {1.7142(12-1)} {13.84\times 1028} = 1.3253\times10^{-3} F-m^{2}αe=13.84×10281.7142(12−1)=1.3253×10−3F−m2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments