The conservative field F \bf F F must satisfy condition
r o t F = 0. \rm rot\:{\bf F}=0 . rot F = 0. We have
r o t ( x i ^ − y j ^ + z k ^ ) = ∣ i ^ j ^ k ^ x − y z ∂ ∂ x ∂ ∂ y ∂ ∂ z ∣ {\rm rot}\:(x\hat i-y\hat j+z\hat k)=\begin{vmatrix}
\hat i & \hat j & \hat k \\
x & -y & z\\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y}& \frac{\partial}{\partial z}
\end{vmatrix} rot ( x i ^ − y j ^ + z k ^ ) = ∣ ∣ i ^ x ∂ x ∂ j ^ − y ∂ y ∂ k ^ z ∂ z ∂ ∣ ∣
= i ^ ( ∂ ( − y ) ∂ z − ∂ z ∂ y ) ) − j ^ ( ∂ x ∂ z − ∂ z ∂ x ) ) + =\hat i\left(\frac{\partial (-y)}{\partial z}-\frac{\partial z}{\partial y})\right)-\hat j\left(\frac{\partial x}{\partial z}-\frac{\partial z}{\partial x})\right)+ = i ^ ( ∂ z ∂ ( − y ) − ∂ y ∂ z ) ) − j ^ ( ∂ z ∂ x − ∂ x ∂ z ) ) +
+ k ^ ( ∂ x ∂ y − ∂ ( − y ) ∂ x ) ) = 0 i ^ + 0 j ^ + 0 k ^ = 0. +\hat k\left(\frac{\partial x}{\partial y}-\frac{\partial (-y)}{\partial x})\right)=0\hat i+0\hat j+0\hat k=\bf 0. + k ^ ( ∂ y ∂ x − ∂ x ∂ ( − y ) ) ) = 0 i ^ + 0 j ^ + 0 k ^ = 0. Hence, the field F \bf F F is conservative.
Comments