Question #104694
Determine whether the following force field
Fis conservative:
F=xi-yj+zk
1
Expert's answer
2020-03-09T10:55:54-0400

The conservative field F\bf F must satisfy condition


rotF=0.\rm rot\:{\bf F}=0 .

We have


rot(xi^yj^+zk^)=i^j^k^xyzxyz{\rm rot}\:(x\hat i-y\hat j+z\hat k)=\begin{vmatrix} \hat i & \hat j & \hat k \\ x & -y & z\\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y}& \frac{\partial}{\partial z} \end{vmatrix}

=i^((y)zzy))j^(xzzx))+=\hat i\left(\frac{\partial (-y)}{\partial z}-\frac{\partial z}{\partial y})\right)-\hat j\left(\frac{\partial x}{\partial z}-\frac{\partial z}{\partial x})\right)+

+k^(xy(y)x))=0i^+0j^+0k^=0.+\hat k\left(\frac{\partial x}{\partial y}-\frac{\partial (-y)}{\partial x})\right)=0\hat i+0\hat j+0\hat k=\bf 0.

Hence, the field F\bf F is conservative.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS