From the law of electromagnetic induction we write
ϵ=ΔΦΔt=Δ(B⋅S)Δt=(ΔBΔt)⋅S\epsilon=\frac{\Delta\Phi}{\Delta t}=\frac{\Delta(B \cdot S)}{\Delta t}=(\frac{\Delta B }{\Delta t})\cdot Sϵ=ΔtΔΦ=ΔtΔ(B⋅S)=(ΔtΔB)⋅S
Where
S=π⋅r2S=\pi \cdot r^2S=π⋅r2
(ΔBΔt)(\frac{\Delta B }{\Delta t})(ΔtΔB) -The rate of change of the magnetic field
Then the current is
I=ϵR=(ΔBΔt)⋅SR=(ΔBΔt)⋅π⋅r2R=(0.5)⋅3.14⋅0.1210=1.57mAI=\frac{\epsilon}{R}=\frac{(\frac{\Delta B }{\Delta t})\cdot S}{R}=\frac{(\frac{\Delta B }{\Delta t})\cdot \pi \cdot r^2}{R}=\frac{(0.5)\cdot 3.14 \cdot 0.1^2}{10}=1.57 mAI=Rϵ=R(ΔtΔB)⋅S=R(ΔtΔB)⋅π⋅r2=10(0.5)⋅3.14⋅0.12=1.57mA
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Thankyou so much
Comments
Thankyou so much