∇ → × E → = − ∂ B → ∂ t \overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t } ∇ × E = − ∂ t ∂ B
∇ → × E → = μ 0 ϵ 0 ∂ E → ∂ t \overrightarrow{\nabla}\times\overrightarrow{E}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t } ∇ × E = μ 0 ϵ 0 ∂ t ∂ E
∇ → × E → ( z , t ) i → = ∣ i → j → k → ∂ ∂ x ∂ ∂ y ∂ ∂ z E → ( z , t ) 0 0 ∣ = ∂ E ∂ z j → \overrightarrow{\nabla}\times\overrightarrow{E}(z,t)\overrightarrow{i}=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
\frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\
\overrightarrow{E}(z,t) &0 & 0
\end{vmatrix}=\frac{\partial E}{\partial z }\overrightarrow{j} ∇ × E ( z , t ) i = ∣ ∣ i ∂ x ∂ E ( z , t ) j ∂ y ∂ 0 k ∂ z ∂ 0 ∣ ∣ = ∂ z ∂ E j
∂ E ∂ z = − ∂ B ∂ t \frac{\partial E}{\partial z }=-\frac{\partial B}{\partial t } ∂ z ∂ E = − ∂ t ∂ B (1)
∇ → × B → ( z , t ) j → = ∣ i → j → k → ∂ ∂ x ∂ ∂ y ∂ ∂ z 0 B → ( z , t ) 0 ∣ = − ∂ B ∂ z i → \overrightarrow{\nabla}\times\overrightarrow{B}(z,t)\overrightarrow{j}=\begin{vmatrix}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\
\frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\
0 & \overrightarrow{B}(z,t) & 0
\end{vmatrix}=-\frac{\partial B}{\partial z }\overrightarrow{i} ∇ × B ( z , t ) j = ∣ ∣ i ∂ x ∂ 0 j ∂ y ∂ B ( z , t ) k ∂ z ∂ 0 ∣ ∣ = − ∂ z ∂ B i
∂ B ∂ z = − μ 0 ϵ 0 ∂ E ∂ t \frac{\partial B}{\partial z }=-\mu_0\epsilon_0\frac{\partial E}{\partial t } ∂ z ∂ B = − μ 0 ϵ 0 ∂ t ∂ E
∂ 2 E ∂ z 2 = − ∂ ∂ z ∂ B ∂ t = − ∂ ∂ t ∂ B ∂ z = − ∂ ∂ t ( − μ 0 ϵ 0 ∂ E ∂ t ) = μ 0 ϵ 0 ∂ 2 E ∂ t 2 \frac{\partial^2 E}{\partial z^2 }=-\frac{\partial}{\partial z }\frac{\partial B}{\partial t }=-\frac{\partial}{\partial t }\frac{\partial B}{\partial z }=-\frac{\partial}{\partial t }(-\mu_0\epsilon_0\frac{\partial E}{\partial t })=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 } ∂ z 2 ∂ 2 E = − ∂ z ∂ ∂ t ∂ B = − ∂ t ∂ ∂ z ∂ B = − ∂ t ∂ ( − μ 0 ϵ 0 ∂ t ∂ E ) = μ 0 ϵ 0 ∂ t 2 ∂ 2 E
∂ 2 E ∂ z 2 = μ 0 ϵ 0 ∂ 2 E ∂ t 2 \frac{\partial^2 E}{\partial z^2 }=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 } ∂ z 2 ∂ 2 E = μ 0 ϵ 0 ∂ t 2 ∂ 2 E Answer
Comments
Thanks