"\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=-\\frac{\\partial \\overrightarrow{B}}{\\partial t }"
"\\overrightarrow{\\nabla}\\times\\overrightarrow{E}=\\mu_0\\epsilon_0\\frac{\\partial \\overrightarrow{E}}{\\partial t }"
"\\overrightarrow{\\nabla}\\times\\overrightarrow{E}(z,t)\\overrightarrow{i}=\\begin{vmatrix}\n \\overrightarrow{i} & \\overrightarrow{j} & \\overrightarrow{k}\\\\\n \\frac{\\partial }{\\partial x } & \\frac{\\partial }{\\partial y } & \\frac{\\partial }{\\partial z } \\\\\n\\overrightarrow{E}(z,t) &0 & 0\n\\end{vmatrix}=\\frac{\\partial E}{\\partial z }\\overrightarrow{j}"
"\\frac{\\partial E}{\\partial z }=-\\frac{\\partial B}{\\partial t }" (1)
"\\overrightarrow{\\nabla}\\times\\overrightarrow{B}(z,t)\\overrightarrow{j}=\\begin{vmatrix}\n \\overrightarrow{i} & \\overrightarrow{j} & \\overrightarrow{k}\\\\\n \\frac{\\partial }{\\partial x } & \\frac{\\partial }{\\partial y } & \\frac{\\partial }{\\partial z } \\\\\n0 & \\overrightarrow{B}(z,t) & 0\n\\end{vmatrix}=-\\frac{\\partial B}{\\partial z }\\overrightarrow{i}"
"\\frac{\\partial B}{\\partial z }=-\\mu_0\\epsilon_0\\frac{\\partial E}{\\partial t }"
"\\frac{\\partial^2 E}{\\partial z^2 }=-\\frac{\\partial}{\\partial z }\\frac{\\partial B}{\\partial t }=-\\frac{\\partial}{\\partial t }\\frac{\\partial B}{\\partial z }=-\\frac{\\partial}{\\partial t }(-\\mu_0\\epsilon_0\\frac{\\partial E}{\\partial t })=\\mu_0\\epsilon_0\\frac{\\partial^2 E}{\\partial t^2 }"
"\\frac{\\partial^2 E}{\\partial z^2 }=\\mu_0\\epsilon_0\\frac{\\partial^2 E}{\\partial t^2 }" Answer
Comments
Thanks
Leave a comment