Question #104221
Using Maxwell’s equations in vacuum, derive the wave equation for the z-component
of the electric field vector associated with an electromagnetic wave.
1
Expert's answer
2020-03-09T10:54:32-0400

×E=Bt\overrightarrow{\nabla}\times\overrightarrow{E}=-\frac{\partial \overrightarrow{B}}{\partial t }


×E=μ0ϵ0Et\overrightarrow{\nabla}\times\overrightarrow{E}=\mu_0\epsilon_0\frac{\partial \overrightarrow{E}}{\partial t }


×E(z,t)i=ijkxyzE(z,t)00=Ezj\overrightarrow{\nabla}\times\overrightarrow{E}(z,t)\overrightarrow{i}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ \overrightarrow{E}(z,t) &0 & 0 \end{vmatrix}=\frac{\partial E}{\partial z }\overrightarrow{j}


Ez=Bt\frac{\partial E}{\partial z }=-\frac{\partial B}{\partial t } (1)


×B(z,t)j=ijkxyz0B(z,t)0=Bzi\overrightarrow{\nabla}\times\overrightarrow{B}(z,t)\overrightarrow{j}=\begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k}\\ \frac{\partial }{\partial x } & \frac{\partial }{\partial y } & \frac{\partial }{\partial z } \\ 0 & \overrightarrow{B}(z,t) & 0 \end{vmatrix}=-\frac{\partial B}{\partial z }\overrightarrow{i}


Bz=μ0ϵ0Et\frac{\partial B}{\partial z }=-\mu_0\epsilon_0\frac{\partial E}{\partial t }


2Ez2=zBt=tBz=t(μ0ϵ0Et)=μ0ϵ02Et2\frac{\partial^2 E}{\partial z^2 }=-\frac{\partial}{\partial z }\frac{\partial B}{\partial t }=-\frac{\partial}{\partial t }\frac{\partial B}{\partial z }=-\frac{\partial}{\partial t }(-\mu_0\epsilon_0\frac{\partial E}{\partial t })=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 }


2Ez2=μ0ϵ02Et2\frac{\partial^2 E}{\partial z^2 }=\mu_0\epsilon_0\frac{\partial^2 E}{\partial t^2 } Answer











Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

Rizwan Khan
11.05.20, 10:15

Thanks

LATEST TUTORIALS
APPROVED BY CLIENTS