I=15AI=15AI=15A
∫Bdl=μ0I\int{Bdl=\mu_0I}∫Bdl=μ0I
If r<Rr<Rr<R
B⋅2πr=μ0⋅I4πR2⋅4πr2→B=μ0I2πR2⋅rB\cdot 2\pi r=\mu_0\cdot \frac{I}{4\pi R^2}\cdot 4\pi r^2\to B=\frac{\mu_0I}{2\pi R^2}\cdot rB⋅2πr=μ0⋅4πR2I⋅4πr2→B=2πR2μ0I⋅r
If r>Rr>Rr>R
B⋅2πr=μ0⋅I→B=μ0I2πrB\cdot 2\pi r=\mu_0\cdot I\to B=\frac{\mu_0I}{2\pi r}B⋅2πr=μ0⋅I→B=2πrμ0I
So, if r=R=5.0mmr=R=5.0 mmr=R=5.0mm then B=BmaxB=B_{max}B=Bmax
Bmax=μ0I2πR=4⋅π⋅10−7⋅152⋅π⋅5⋅10−3=6⋅10−4TB_{max}=\frac{\mu_0I}{2\pi R}=\frac{4\cdot \pi\cdot 10^{-7}\cdot15}{2\cdot\pi \cdot5\cdot 10^{-3}}=6\cdot 10^{-4}TBmax=2πRμ0I=2⋅π⋅5⋅10−34⋅π⋅10−7⋅15=6⋅10−4T
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments