Question #104219
A long, straight wire of diameter 5.0 mm carries a uniformly distributed current of
15 A. At what distance from the axis of the wire will the magnitude of B be maximum? Justify your answer.
1
Expert's answer
2020-03-04T10:00:15-0500

R=5.0mmR=5.0 mm

I=15AI=15A

According to Ampere's circuital law

Bdl=μ0I\int{Bdl=\mu_0I}


If r<Rr<R


B2πr=μ0I4πR24πr2B=μ0I2πR2rB\cdot 2\pi r=\mu_0\cdot \frac{I}{4\pi R^2}\cdot 4\pi r^2\to B=\frac{\mu_0I}{2\pi R^2}\cdot r


If r>Rr>R


B2πr=μ0IB=μ0I2πrB\cdot 2\pi r=\mu_0\cdot I\to B=\frac{\mu_0I}{2\pi r}


So, if r=R=5.0mmr=R=5.0 mm then B=BmaxB=B_{max}


Bmax=μ0I2πR=4π107152π5103=6104TB_{max}=\frac{\mu_0I}{2\pi R}=\frac{4\cdot \pi\cdot 10^{-7}\cdot15}{2\cdot\pi \cdot5\cdot 10^{-3}}=6\cdot 10^{-4}T




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS