Let us assume that side of the equilateral triangle is 1m.
Let "q_1 = 7.00C, q_2=2.00C, q_3 = -4.00C"
Force on 7C due to 2C is given by, "F_1 = \\frac{1}{4\\pi \\epsilon_0} \\frac{q_1q_2}{r^2} = \\frac{9\\times 10^9 \\times 7 \\times 2}{1^2} = 126\\times 10^9 N"
Force on 7C due to -4C is given by, "F_2 = \\frac{1}{4\\pi \\epsilon_0} \\frac{q_1q_3}{r^2} = \\frac{9\\times 10^9 \\times 7 \\times 4}{1^2} = 252\\times 10^9 N"
Since, these forces are acting at angle of "120^{\\circ}"
Then, resultant of the forces is given by,
"F = \\sqrt{F_1^2+F_2^2+2F_1F_2cos\\theta} = \\sqrt{(126\\times 10^9)^2+(252\\times 10^9)^2+2(252\\times 10^9)(126\\times 10^9)cos120}"
"F = (126\\times 10^9)\\sqrt{1+4+4cos120} = (126\\times 10^9)\\sqrt{1+4-2} = (126\\sqrt{3}\\times 10^9) N"
"F = 218.24 \\times 10^9 N"
Comments
Leave a comment