Since the open circuit voltage is the total voltage, the total current will be equal to "I_{total}=\\frac{U_0}{R_1+R_2}" , where "U_0" is the open circuit voltage, "R_1" is the microphone impedance, and "R_2" is the resistance of the input load, therefore the input load voltage according to the Ohm law will be "U_2=\\frac{U_0}{R_1+R_2}\\times R_2" , and the input power:
"P_1 = (\\frac{U_0} {R_1+R_2}\\times R_2) ^2\\times \\frac {1}{R_2}" "= \\frac{U_0^2\\times R_2} {R_1^2+2\\times R_1\\times R_2+R_2^2}" , an output power is equal to "P_2=P_1\\times 1000" "=\\frac{U_0^2 \\times R_2}{R_1^2+2\\times R_1\\times R_2+R_2^2}\\times 1000" , "1000" is a coefficient of increase in power, it is visible that function "P_2" "(R_2)" decreases on "R" therefore its maximum value will be at "R_2=200 \\Omega"
"P_2=\\frac{0.02^2\\times 200}{500^2+2\\times 500\\times 200+200^2}\\times 1000=0.16" mW.
The voltage is equal at the input "U_2=\\frac{U_0}{R_1+R_2}\\times R_2" , therefore at the output "U_1=U_2\\times 100 =\\frac {U _ 0} {R _ 1 + R _ 2 }\\times R_2\\times 100" , the function "U_1 (R_2)" increases by "R" , therefore at "R_2=10^6\\Omega" there will be the highest voltage.
"U_1=U_2\\times 100=\\frac{0.02}{500+10^6}\\times 10^6\\times 100=2" V.
Comments
Leave a comment