What is the angular momentum of the hour hand of a clock If it has a length of 25 cm and a mass of 20 g?
"L= I*\\omega,\\text{where:}"
"I=\\frac {ml^2}{3}-\\text{Inertia of a thin bar the axis of rotation} \\newline\n\\text{passes through the end of the bar}\\newline\nl=25cm =0.25m;\\newline\nm=20g=0.02kg\\newline\nI=\\frac{0.02*0.25^2}{3}=4,16*10^{-4}"
"\\omega-\\text{angular velocity}\\newline\n\\text{one turn is }2\\pi\\ rad"
"\\omega=\\frac{2\\pi}{t}"
"t=1h =3600s"
"\\omega=\\frac{2\\pi}{3600}=1.75*10^{-3}"
"L=4.16*10^{-4}*1.75*10^{-3}=7.28*10^{-7}\\newline\n\\text{Answer: }7.28*10^{-7}\\ \\frac{kg*m^2}{s}"
Comments
Leave a comment