Question #185599

A circular saw blade 0.6 m in diameter starts from rest and accelerates with constant acceleration to an angular velocity of 100 rad.s-1 in 20 s.


Find the angular acceleration.

Determine the angle through which the blade has turned in the 20-s interval.

Solve for the linear velocity of a point in the rim of the saw when the angular velocity is 10 rad.s-1.


1
Expert's answer
2021-04-26T16:48:56-0400

ω(t)=ω(0)+αt;\vec\omega(t)=\vec\omega(0)+\vec\alpha t;

α=ω(t)ω(0)t;\vec\alpha=\frac{\vec\omega(t)-\vec\omega(0)}{t};

α=ω(20)ω(0)20=100020=5 rad/s2\vec\alpha=\frac{\vec\omega(20)-\vec\omega(0)}{20}=\frac{100-0}{20}=5\ rad/s^2


θtθ0=ω0+ωt2t\theta_t-\theta_0= \frac{\vec\omega_0+\vec\omega_t}{2}t

Δθ=0+100220=1000 rad\Delta\theta= \frac{0+100}{2}*20=1000\ rad


v=rω;\vec v=\vec r\vec\omega;

The linear velocity vector is on the tangent to the circle, the tangent to the circle is orthogonal with the radius\text{The linear velocity vector is on the tangent to the circle, }\newline \text{the tangent to the circle is orthogonal with the radius}

v=rωsin90°;|\vec v|=|\vec r||\vec \omega|\sin90\degree;

v=100.61=6m/s|\vec v|=10*0.6*1=6m/s


Answer: α=5 rad/s2; Δθ=1000 rad; v=6m/s\text{Answer: }\vec\alpha=5\ rad/s^2;\ \Delta\theta=1000\ rad;\ |\vec v|=6m/s










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS