ω ⃗ ( t ) = ω ⃗ ( 0 ) + α ⃗ t ; \vec\omega(t)=\vec\omega(0)+\vec\alpha t; ω ( t ) = ω ( 0 ) + α t ;
α ⃗ = ω ⃗ ( t ) − ω ⃗ ( 0 ) t ; \vec\alpha=\frac{\vec\omega(t)-\vec\omega(0)}{t}; α = t ω ( t ) − ω ( 0 ) ;
α ⃗ = ω ⃗ ( 20 ) − ω ⃗ ( 0 ) 20 = 100 − 0 20 = 5 r a d / s 2 \vec\alpha=\frac{\vec\omega(20)-\vec\omega(0)}{20}=\frac{100-0}{20}=5\ rad/s^2 α = 20 ω ( 20 ) − ω ( 0 ) = 20 100 − 0 = 5 r a d / s 2
θ t − θ 0 = ω ⃗ 0 + ω ⃗ t 2 t \theta_t-\theta_0= \frac{\vec\omega_0+\vec\omega_t}{2}t θ t − θ 0 = 2 ω 0 + ω t t
Δ θ = 0 + 100 2 ∗ 20 = 1000 r a d \Delta\theta= \frac{0+100}{2}*20=1000\ rad Δ θ = 2 0 + 100 ∗ 20 = 1000 r a d
v ⃗ = r ⃗ ω ⃗ ; \vec v=\vec r\vec\omega; v = r ω ;
The linear velocity vector is on the tangent to the circle, the tangent to the circle is orthogonal with the radius \text{The linear velocity vector is on the tangent to the circle, }\newline
\text{the tangent to the circle is orthogonal with the radius} The linear velocity vector is on the tangent to the circle, the tangent to the circle is orthogonal with the radius
∣ v ⃗ ∣ = ∣ r ⃗ ∣ ∣ ω ⃗ ∣ sin 90 ° ; |\vec v|=|\vec r||\vec \omega|\sin90\degree; ∣ v ∣ = ∣ r ∣∣ ω ∣ sin 90° ;
∣ v ⃗ ∣ = 10 ∗ 0.6 ∗ 1 = 6 m / s |\vec v|=10*0.6*1=6m/s ∣ v ∣ = 10 ∗ 0.6 ∗ 1 = 6 m / s
Answer: α ⃗ = 5 r a d / s 2 ; Δ θ = 1000 r a d ; ∣ v ⃗ ∣ = 6 m / s \text{Answer: }\vec\alpha=5\ rad/s^2;\ \Delta\theta=1000\ rad;\ |\vec v|=6m/s Answer: α = 5 r a d / s 2 ; Δ θ = 1000 r a d ; ∣ v ∣ = 6 m / s
Comments