A circular saw blade 0.6 m in diameter starts from rest and accelerates with constant acceleration to an angular velocity of 100 rad.s-1 in 20 s.
Find the angular acceleration.
Determine the angle through which the blade has turned in the 20-s interval.
Solve for the linear velocity of a point in the rim of the saw when the angular velocity is 10 rad.s-1.
"\\vec\\omega(t)=\\vec\\omega(0)+\\vec\\alpha t;"
"\\vec\\alpha=\\frac{\\vec\\omega(t)-\\vec\\omega(0)}{t};"
"\\vec\\alpha=\\frac{\\vec\\omega(20)-\\vec\\omega(0)}{20}=\\frac{100-0}{20}=5\\ rad\/s^2"
"\\theta_t-\\theta_0= \\frac{\\vec\\omega_0+\\vec\\omega_t}{2}t"
"\\Delta\\theta= \\frac{0+100}{2}*20=1000\\ rad"
"\\vec v=\\vec r\\vec\\omega;"
"\\text{The linear velocity vector is on the tangent to the circle, }\\newline\n\\text{the tangent to the circle is orthogonal with the radius}"
"|\\vec v|=|\\vec r||\\vec \\omega|\\sin90\\degree;"
"|\\vec v|=10*0.6*1=6m\/s"
"\\text{Answer: }\\vec\\alpha=5\\ rad\/s^2;\\ \\Delta\\theta=1000\\ rad;\\ |\\vec v|=6m\/s"
Comments
Leave a comment