Answer to Question #185597 in Classical Mechanics for Jethro

Question #185597

An electric motor is turned off, and its angular velocity decreases uniformly from 1000 revolutions per minute(rpm) to 400 revolutions per minute in 5 s.


Find the angular acceleration and the number of revolutions made by the motor in the 5-s interval.


1
Expert's answer
2021-04-30T11:04:21-0400

ω(t)=ω0+αt\vec\omega(t)=\vec\omega_0+\vec\alpha t

α=ω(t)ω0t\vec\alpha =\frac{\vec\omega(t)-\vec\omega_0}{t}

t=5s=112mint =5s = \frac{1}{12}min

ω0=1000rpm=2π601000=100rad/s\omega_0=1000rpm =\frac{2\pi}{60}1000= 100 rad/s

ω(t)=400rpm=2π604000=40rad/s\omega(t)=400rpm =\frac{2\pi}{60}4000= 40 rad/s

α=4001000t=7200rpm/min\vec\alpha=\frac{400-1000}{t}=-7200rpm/min

θtθ0=ω0+ωt2t;\theta_t-\theta_0=\frac{\vec\omega_0+\vec\omega_t}{2}*t;

Δθ=1000+4002112=58.3 turnover\Delta\theta=\frac{1000+400}{2}*\frac{1}{12}=58.3\text{ turnover}

Answer:7200rpm/min;58.3 turnover\text{Answer:}-7200rpm/min;58.3\text{ turnover}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment