Question #185604

The angle x through which a bicycle wheel turns is given by x = a + bt2 + ct3 where a, b, and c are constants.


Calculate the velocity and acceleration of the wheel as a function of time.


1
Expert's answer
2021-04-26T16:48:52-0400

x=a+bt2+ct3x = a+bt^2+ct^3

The angular velocity of rotation is a vector numerically equal to the first derivative\text{The angular velocity of rotation is a vector numerically equal to the first derivative}

of the angle of rotation of the body\text{of the angle of rotation of the body}

ω=x=2bt+3ct2\vec\omega= x'=2bt+3ct^2

Angular acceleration is a vector quantity equal to the first derivative\text{Angular acceleration is a vector quantity equal to the first derivative}

of the angular velocity with respect to time\text{{of the angular velocity with respect to time}}

α=ω=2b+6ct\vec\alpha=\vec\omega'=2b+6ct

Answer : ω=2bt+3ct2;α=2b+6ct\text{Answer : }\vec\omega= 2bt+3ct^2;\vec\alpha=2b+6ct



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS